Hinterland drainage closure and lake formation in response to middle Eocene Farallon slab removal, Nevada, U.S.A.

M. Elliot Smith, Elizabeth J. Cassel, Brian R. Jicha, Brad S. Singer, Andrew S. Canada

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

Hinterland basins can accumulate high resolution archives of orogenic processes and continental climate, but are challenging to reconstruct due to tectonic overprinting and the inherent complexity of their lithofacies assemblages. The Cordilleran hinterland of northeast Nevada has been interpreted to have overlain a flattened Farallon slab from the Late Cretaceous to Eocene. Slab removal and advection of asthenospheric mantle beneath Nevada have been invoked to explain a southwestward migrating wave of Eocene to Oligocene volcanism and proposed as a driver for topographic uplift. However, the timing of slab removal and possible subsequent delamination of North American lithospheric mantle can only ambiguously be related to the surface record. Subsequent Neogene extension and basin filling has complicated the correlation and interpretation of strata that record these events. Here we apply single crystal sanidine 40Ar/39Ar geochronology to 26 ash beds in northeast Nevada to reconstruct Paleogene geographic and hydrologic evolution. We use these ages and legacy geochronology to compare lithofacies and isotope proxy records of meteoric waters to regional tectonics and global climate, and assess competing tectonic interpretations for lake basin formation. Lakes formed locally prior to ca. 48.7 Ma in northeast Nevada, coeval with foreland lakes of the Green River Formation. The most expansive phase of lacustrine deposition resulted in onlap onto locally derived fluvial deposits and folded Paleozoic bedrock, and occurred between ca. 43.4 and ca. 40.8 Ma. Elko Formation strata exhibit a basin-wide transition from fluvial-lacustrine to fluctuating profundal lithofacies at ca. 42.7 Ma, suggesting a shift towards regional hydrologic closure. The stromatolitic upper Elko Formation is intercalated with ash fall tuffs and several partially welded to unwelded ignimbrites from increasingly proximal volcanism. Elko Formation deposition ended by ca. 40.4 Ma. 40Ar/39Ar ages for seven ash beds in the Dead Horse Formation at Copper Basin in northern Elko County indicate intermittent ash bed deposition between 45.2 Ma and 38.6 Ma, and an episode of lacustrine deposition between 39.8 Ma and 38.6 Ma that post-dates the main phase of Lake Elko. δD values of volcanic glass sampled from dated ash beds reflect changes in the hydrogen isotope compositions of local Eocene waters, and systematically vary by 80–102‰ according to their depositional environment. The Elko Formation and overlying volcanic strata are overlain regionally by a pronounced unconformity of ∼20 m.y. In the Copper Basin area, deposition continued locally into the Oligocene in the hanging wall of a ductile detachment. The geochronologic and isotopic framework presented here permits reanalysis of the Piñon Range carbonate proxy record that was previously interpreted to record both regional uplift and the middle Eocene climatic optimum. New data suggest instead that isotope values of hydration waters within the Elko Formation were strongly influenced by evaporation, and a change from lacustrine to non-lacustrine conditions can account for the δ18O shift that was interpreted to reflect regional uplift. Moreover, the end of Elko Formation deposition predated the middle Eocene climatic optimum. We interpret the overall record of drainage ponding and paleovalley inundation, progressively more evaporative lacustrine conditions, increasingly proximal volcanism, and subsequent prolonged unconformity to reflect the surface effects of progressive NE to SW removal of the Farallon slab.

Original languageEnglish (US)
Pages (from-to)156-169
Number of pages14
JournalEarth and Planetary Science Letters
Volume479
DOIs
StatePublished - Dec 1 2017

Keywords

  • Elko Formation
  • Eocene
  • Farallon slab rollback
  • evaporation
  • lacustrine
  • δD values

ASJC Scopus subject areas

  • Geophysics
  • Geochemistry and Petrology
  • Space and Planetary Science
  • Earth and Planetary Sciences (miscellaneous)

Fingerprint

Dive into the research topics of 'Hinterland drainage closure and lake formation in response to middle Eocene Farallon slab removal, Nevada, U.S.A.'. Together they form a unique fingerprint.

Cite this