TY - JOUR
T1 - Habitable zones around main-sequence stars
T2 - New estimates
AU - Kopparapu, Ravi Kumar
AU - Ramirez, Ramses
AU - Kasting, James F.
AU - Eymet, Vincent
AU - Robinson, Tyler D.
AU - Mahadevan, Suvrath
AU - Terrien, Ryan C.
AU - Domagal-Goldman, Shawn
AU - Meadows, Victoria
AU - Deshpande, Rohit
PY - 2013/3/10
Y1 - 2013/3/10
N2 - Identifying terrestrial planets in the habitable zones (HZs) of other stars is one of the primary goals of ongoing radial velocity (RV) and transit exoplanet surveys and proposed future space missions. Most current estimates of the boundaries of the HZ are based on one-dimensional (1D), cloud-free, climate model calculations by Kasting et al. However, this model used band models that were based on older HITRAN and HITEMP line-by-line databases. The inner edge of the HZ in the Kasting et al. model was determined by loss of water, and the outer edge was determined by the maximum greenhouse provided by a CO2 atmosphere. A conservative estimate for the width of the HZ from this model in our solar system is 0.95-1.67 AU. Here an updated 1D radiative-convective, cloud-free climate model is used to obtain new estimates for HZ widths around F, G, K, and M stars. New H2O and CO2 absorption coefficients, derived from the HITRAN 2008 and HITEMP 2010 line-by-line databases, are important improvements to the climate model. According to the new model, the water-loss (inner HZ) and maximum greenhouse (outer HZ) limits for our solar system are at 0.99 and 1.70 AU, respectively, suggesting that the present Earth lies near the inner edge. Additional calculations are performed for stars with effective temperatures between 2600 and 7200 K, and the results are presented in parametric form, making them easy to apply to actual stars. The new model indicates that, near the inner edge of the HZ, there is no clear distinction between runaway greenhouse and water-loss limits for stars with T eff ≲ 5000 K, which has implications for ongoing planet searches around K and M stars. To assess the potential habitability of extrasolar terrestrial planets, we propose using stellar flux incident on a planet rather than equilibrium temperature. This removes the dependence on planetary (Bond) albedo, which varies depending on the host star's spectral type. We suggest that conservative estimates of the HZ (water-loss and maximum greenhouse limits) should be used for current RV surveys and Kepler mission to obtain a lower limit on η⊕, so that future flagship missions like TPF-C and Darwin are not undersized. Our model does not include the radiative effects of clouds; thus, the actual HZ boundaries may extend further in both directions than the estimates just given.
AB - Identifying terrestrial planets in the habitable zones (HZs) of other stars is one of the primary goals of ongoing radial velocity (RV) and transit exoplanet surveys and proposed future space missions. Most current estimates of the boundaries of the HZ are based on one-dimensional (1D), cloud-free, climate model calculations by Kasting et al. However, this model used band models that were based on older HITRAN and HITEMP line-by-line databases. The inner edge of the HZ in the Kasting et al. model was determined by loss of water, and the outer edge was determined by the maximum greenhouse provided by a CO2 atmosphere. A conservative estimate for the width of the HZ from this model in our solar system is 0.95-1.67 AU. Here an updated 1D radiative-convective, cloud-free climate model is used to obtain new estimates for HZ widths around F, G, K, and M stars. New H2O and CO2 absorption coefficients, derived from the HITRAN 2008 and HITEMP 2010 line-by-line databases, are important improvements to the climate model. According to the new model, the water-loss (inner HZ) and maximum greenhouse (outer HZ) limits for our solar system are at 0.99 and 1.70 AU, respectively, suggesting that the present Earth lies near the inner edge. Additional calculations are performed for stars with effective temperatures between 2600 and 7200 K, and the results are presented in parametric form, making them easy to apply to actual stars. The new model indicates that, near the inner edge of the HZ, there is no clear distinction between runaway greenhouse and water-loss limits for stars with T eff ≲ 5000 K, which has implications for ongoing planet searches around K and M stars. To assess the potential habitability of extrasolar terrestrial planets, we propose using stellar flux incident on a planet rather than equilibrium temperature. This removes the dependence on planetary (Bond) albedo, which varies depending on the host star's spectral type. We suggest that conservative estimates of the HZ (water-loss and maximum greenhouse limits) should be used for current RV surveys and Kepler mission to obtain a lower limit on η⊕, so that future flagship missions like TPF-C and Darwin are not undersized. Our model does not include the radiative effects of clouds; thus, the actual HZ boundaries may extend further in both directions than the estimates just given.
KW - planetary systems
UR - http://www.scopus.com/inward/record.url?scp=84874490266&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84874490266&partnerID=8YFLogxK
U2 - 10.1088/0004-637X/765/2/131
DO - 10.1088/0004-637X/765/2/131
M3 - Article
AN - SCOPUS:84874490266
SN - 0004-637X
VL - 765
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 131
ER -