Abstract
In this paper we look at the problem of peak power reduction for buildings with electric radiant floor heating systems. Uncoordinated operation of a multi-zone radiant floor heating system can result in temporally correlated electricity demand surges or peaks in the building's electricity consumption. As peak power prices are 200-400 times that of the nominal rate, this uncoordinated activity can result in high electricity costs and expensive system operation. We have previously presented green scheduling as an approach for reducing the aggregate peak power consumption in buildings while ensuring that indoor thermal comfort is always maintained. This paper extends the theoretical results for general affine dynamical systems and applies them to electric radiant floor heating systems. The potential of the proposed method in reducing the peak power demand is demonstrated for a small-scale system through simulation in EnergyPlus and for a large-scale system through simulation in Matlab.
Original language | English (US) |
---|---|
Article number | 6426318 |
Pages (from-to) | 7577-7582 |
Number of pages | 6 |
Journal | Proceedings of the IEEE Conference on Decision and Control |
DOIs | |
State | Published - 2012 |
Externally published | Yes |
Event | 51st IEEE Conference on Decision and Control, CDC 2012 - Maui, HI, United States Duration: Dec 10 2012 → Dec 13 2012 |
ASJC Scopus subject areas
- Control and Systems Engineering
- Modeling and Simulation
- Control and Optimization