TY - JOUR
T1 - Grazing dampens the positive effects of shrub encroachment on ecosystem functions in a semi-arid woodland
AU - Eldridge, David J.
AU - Soliveres, Santiago
AU - Bowker, Matthew A.
AU - Val, James
PY - 2013/8
Y1 - 2013/8
N2 - Summary: The encroachment of woody plants into grasslands, open woodlands and savannah has been widely reported over the past few decades. Overgrazing is a probable cause of shrub encroachment and could be a stronger driver of declining ecosystem structure and functioning in shrublands than encroachment per se. We examined the relative effects of changes in shrub cover and grazing rate on ecosystem functions at sandy and loamy sites in eastern Australia varying in shrub cover and grazing. Our aim was to test the notion that the negative effects on ecosystem functioning commonly attributed to encroachment are more likely due to grazing than to increase in shrub cover per se. Structural equation modelling indicated a generally strong positive effect of increasing shrub cover, and a generally negative, or slight effect of grazing on multiple measures of ecosystem function related to plant productivity, water infiltration, nutrient cycling and surface stability. On loamy soils, grazing generally dampened the positive effects of increasing shrub cover on most response variables. On sandy soils, however, although there were generally stronger effects of grazing, most attributes did not change in response to increasing shrub cover. Synthesis and applications. Our results indicate that, contrary to the prevailing opinion, increasing shrub cover was generally associated with increases (or no change) in functional and structural measures indicative of healthy systems. The dampening of the positive effects of shrub cover caused by grazing was site (soil texture) specific, reinforcing the notion that the effects of increasing shrub cover and their interaction with grazing are context dependent. Our study provides the basis for improved understanding and management of shrublands for a number of competing goals and suggests that managing grazing rates is a better strategy than focusing on shrub removal. Using low levels of grazing is likely to maximize the benefits from shrublands, such as the maintenance of biodiversity, water infiltration and C sequestration, while maintaining a productive herbaceous community. Our results indicate that, contrary to the prevailing opinion, increasing shrub cover was generally associated with increases (or no change) in functional and structural measures indicative of healthy systems. The dampening of the positive effects of shrub cover caused by grazing was site (soil texture) specific, reinforcing the notion that the effects of increasing shrub cover and their interaction with grazing are context dependent. Our study provides the basis for improved understanding and management of shrublands for a number of competing goals and suggests that managing grazing rates is a better strategy than focusing on shrub removal. Using low levels of grazing is likely to maximize the benefits from shrublands, such as the maintenance of biodiversity, water infiltration and C sequestration, while maintaining a productive herbaceous community.
AB - Summary: The encroachment of woody plants into grasslands, open woodlands and savannah has been widely reported over the past few decades. Overgrazing is a probable cause of shrub encroachment and could be a stronger driver of declining ecosystem structure and functioning in shrublands than encroachment per se. We examined the relative effects of changes in shrub cover and grazing rate on ecosystem functions at sandy and loamy sites in eastern Australia varying in shrub cover and grazing. Our aim was to test the notion that the negative effects on ecosystem functioning commonly attributed to encroachment are more likely due to grazing than to increase in shrub cover per se. Structural equation modelling indicated a generally strong positive effect of increasing shrub cover, and a generally negative, or slight effect of grazing on multiple measures of ecosystem function related to plant productivity, water infiltration, nutrient cycling and surface stability. On loamy soils, grazing generally dampened the positive effects of increasing shrub cover on most response variables. On sandy soils, however, although there were generally stronger effects of grazing, most attributes did not change in response to increasing shrub cover. Synthesis and applications. Our results indicate that, contrary to the prevailing opinion, increasing shrub cover was generally associated with increases (or no change) in functional and structural measures indicative of healthy systems. The dampening of the positive effects of shrub cover caused by grazing was site (soil texture) specific, reinforcing the notion that the effects of increasing shrub cover and their interaction with grazing are context dependent. Our study provides the basis for improved understanding and management of shrublands for a number of competing goals and suggests that managing grazing rates is a better strategy than focusing on shrub removal. Using low levels of grazing is likely to maximize the benefits from shrublands, such as the maintenance of biodiversity, water infiltration and C sequestration, while maintaining a productive herbaceous community. Our results indicate that, contrary to the prevailing opinion, increasing shrub cover was generally associated with increases (or no change) in functional and structural measures indicative of healthy systems. The dampening of the positive effects of shrub cover caused by grazing was site (soil texture) specific, reinforcing the notion that the effects of increasing shrub cover and their interaction with grazing are context dependent. Our study provides the basis for improved understanding and management of shrublands for a number of competing goals and suggests that managing grazing rates is a better strategy than focusing on shrub removal. Using low levels of grazing is likely to maximize the benefits from shrublands, such as the maintenance of biodiversity, water infiltration and C sequestration, while maintaining a productive herbaceous community.
KW - Biodiversity
KW - Carbon
KW - Habitat management
KW - Infiltration
KW - Plant communities
KW - Shrubland
KW - Soil
KW - Structural equation modelling
KW - Woody thickening
UR - http://www.scopus.com/inward/record.url?scp=84880330358&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84880330358&partnerID=8YFLogxK
U2 - 10.1111/1365-2664.12105
DO - 10.1111/1365-2664.12105
M3 - Article
AN - SCOPUS:84880330358
SN - 0021-8901
VL - 50
SP - 1028
EP - 1038
JO - Journal of Applied Ecology
JF - Journal of Applied Ecology
IS - 4
ER -