GPU accelerated self-join for the distance similarity metric

Michael Gowanlock, Ben Karsin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

The self-join finds all objects in a dataset within a threshold of each other defined by a similarity metric. As such, the self-join is a building block for the field of databases and data mining, and is employed in Big Data applications. In this paper, we advance a GPU-efficient algorithm for the similarity self-join that uses the Euclidean distance metric. The search-and-refine strategy is an efficient approach for low dimensionality datasets, as index searches degrade with increasing dimension (i.e., the curse of dimensionality). Thus, we target the low dimensionality problem, and compare our GPU self-join to a search-and-refine implementation, and a state-of-the-art parallel algorithm. In low dimensionality, there are several unique challenges associated with efficiently solving the self-join problem on the GPU. Low dimensional data often results in higher data densities, causing a significant number of distance calculations and a large result set. As dimensionality increases, index searches become increasingly exhaustive, forming a performance bottleneck. We advance several techniques to overcome these challenges using the GPU. The techniques we propose include a GPU-efficient index that employs a bounded search, a batching scheme to accommodate large result set sizes, and a reduction in distance calculations through duplicate search removal. Our GPU self-join outperforms both search-and-refine and state-of-the-art algorithms.

Original languageEnglish (US)
Title of host publicationProceedings - 2018 IEEE 32nd International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages477-486
Number of pages10
ISBN (Print)9781538655559
DOIs
StatePublished - Aug 3 2018
Externally publishedYes
Event32nd IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2018 - Vancouver, Canada
Duration: May 21 2018May 25 2018

Publication series

NameProceedings - 2018 IEEE 32nd International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2018

Conference

Conference32nd IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2018
Country/TerritoryCanada
CityVancouver
Period5/21/185/25/18

Keywords

  • GPGPU
  • In-memory database
  • Query optimization
  • Self-join

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Networks and Communications
  • Hardware and Architecture
  • Information Systems and Management

Fingerprint

Dive into the research topics of 'GPU accelerated self-join for the distance similarity metric'. Together they form a unique fingerprint.

Cite this