Further insight on the power harvesting capabilities of magnetic shape memory alloys

Roger Guiel, Jason L. Dikes, Constantin Ciocanel, Heidi P Feigenbaum

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Magnetic shape memory alloys are a relatively new class of materials that are suitable for actuation, sensing, and power harvesting. The power harvesting capability comes from the change in magnetization that the material exhibits when internal martensitic variants change orientation. In typical power harvesting tests, the material is loaded with axial compression in the presence of a bias magnetic field applied normal to the compressive loading direction. However, previous results suggest that having a component of the bias magnetic field applied axially, parallel to the compressive stress, can increase the power output of MSMAs. Furthermore, most of the MSMAs power harvesting results reported to date focused on the open circuit voltage that the material can generate during cyclic loading. However, this information is not indicative of the true power harvesting capability of the material and one has to focus on the power output of the material instead. This paper presents voltage trends and power output data for a MSMA sample exposed simultaneously to a cyclic compressive stress and bi-Axial magnetic field.

Original languageEnglish (US)
Title of host publicationIntegrated System Design and Implementation; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791857304
DOIs
StatePublished - 2015
EventASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2015 - Colorado Springs, United States
Duration: Sep 21 2015Sep 23 2015

Publication series

NameASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2015
Volume2

Other

OtherASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2015
Country/TerritoryUnited States
CityColorado Springs
Period9/21/159/23/15

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Control and Systems Engineering
  • Mechanics of Materials
  • Building and Construction

Fingerprint

Dive into the research topics of 'Further insight on the power harvesting capabilities of magnetic shape memory alloys'. Together they form a unique fingerprint.

Cite this