Federated Learning for Enhanced ECG Signal Classification with Privacy Awareness

Quoc Bao Phan, Linh Nguyen, Ngoc Thang Bui, Dinh C. Nguyen, Lan Zhang, Tuy Tan Nguyen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper presents a novel approach for classifying electrocardiogram (ECG) signals in healthcare applications using federated learning and stacked convolutional neural networks (CNNs). Our innovative technique leverages the distributed nature of federated learning to collaboratively train a high-performance model while preserving data privacy on local devices. We propose a stacked CNN architecture tailored for ECG data, effectively extracting discriminative features across different temporal scales. The evaluation confirms the strength of our approach, culminating in a final model accuracy of 98.6% after 100 communication rounds, significantly exceeding baseline performance. This promising result paves the way for accurate and privacy-preserving ECG classification in diverse healthcare settings, potentially leading to improved diagnosis and patient monitoring.

Original languageEnglish (US)
Title of host publication46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350371499
DOIs
StatePublished - 2024
Externally publishedYes
Event46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024 - Orlando, United States
Duration: Jul 15 2024Jul 19 2024

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024
Country/TerritoryUnited States
CityOrlando
Period7/15/247/19/24

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Federated Learning for Enhanced ECG Signal Classification with Privacy Awareness'. Together they form a unique fingerprint.

Cite this