Evaluating the simulated mean soil carbon transit times by Earth system models using observations

Jing Wang, Jianyang Xia, Xuhui Zhou, Kun Huang, Jian Zhou, Yuanyuan Huang, Lifen Jiang, Xia Xu, Junyi Liang, Ying Ping Wang, Xiaoli Cheng, Yiqi Luo

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

One known bias in current Earth system models (ESMs) is the underestimation of global mean soil carbon (C) transit time (τ, soil ), which quantifies the age of the C atoms at the time they leave the soil. However, it remains unclear where such underestimations are located globally. Here, we constructed a global database of measured τ, soil across 187 sites to evaluate results from 12 ESMs. The observations showed that the estimated τ, soil was dramatically shorter from the soil incubation studies in the laboratory environment (median = 4 years; interquartile range = 1 to 25 years) than that derived from field in situ measurements (31; 5 to 84 years) with shifts in stable isotopic C (= 13 C) or the stock-over-flux approach. In comparison with the field observations, the multi-model ensemble simulated a shorter median (19 years) and a smaller spatial variation (6 to 29 years) of τ, soil across the same site locations. We then found a significant and negative linear correlation between the in situ measured τ, soil and mean annual air temperature. The underestimations of modeled τ, soil are mainly located in cold and dry biomes, especially tundra and desert. Furthermore, we showed that one ESM (i.e., CESM) has improved its τ, soil estimate by incorporation of the soil vertical profile. These findings indicate that the spatial variation of τ, soil is a useful benchmark for ESMs, and we recommend more observations and modeling efforts on soil C dynamics in regions limited by temperature and moisture.

Original languageEnglish (US)
Pages (from-to)917-926
Number of pages10
JournalBiogeosciences
Volume16
Issue number4
DOIs
StatePublished - Feb 27 2019

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Earth-Surface Processes

Fingerprint

Dive into the research topics of 'Evaluating the simulated mean soil carbon transit times by Earth system models using observations'. Together they form a unique fingerprint.

Cite this