Evaluating methane adsorption characteristics of coal-like materials

Pengxiang Zhao, Hui Liu, Chun Hsing Ho, Shugang Li, Yanqun Liu, Haifei Lin, Min Yan

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


In order to investigate the methane adsorption characteristics of coal seam materials in a "solid-gas" coupling physical simulation experiment, activated alumina, silica gel, the 3A molecular sieve, 4A molecular sieve and 5A molecular sieve were selected as adsorption materials. According to the pore structure and adsorption characteristics, coal samples at the Aiweiergou #1890 working face were prepared as compared materials. The WY-98A methane adsorption coefficient measuring instrument was used to carry out this adsorption experiment under different temperatures, particle sizes and moisture contents. The results suggested that the adsorption principles of three kinds of molecular sieves under multiple factors do not fully fit a Langmuir adsorption model, and cannot be used as adsorption materials. The changing trend of the adsorption increment of activated alumina and silica gel are similar to that of coal samples, so they can be used as a coal-like materials. The methane adsorption coefficient a value changing trends of activated alumina and silica gel appear to be the same as the Aiweiergou #1890 coal samples, but the results from silica gel are closer to that of coal samples. Thus, silica gel is preferred as the adsorption material. The result provides an experimental basis for the selection of methane-adsorbing materials and carrying out "solid-gas" coupling physical simulation experiments in a physically similar testing model.

Original languageEnglish (US)
Article number751
Issue number3
StatePublished - Feb 1 2020


  • Adsorption principle
  • Adsorptionmaterials
  • Multiple factors
  • The ratio ofmethane adsorption

ASJC Scopus subject areas

  • Condensed Matter Physics
  • General Materials Science


Dive into the research topics of 'Evaluating methane adsorption characteristics of coal-like materials'. Together they form a unique fingerprint.

Cite this