TY - JOUR
T1 - Enhanced peak growth of global vegetation and its key mechanisms
AU - Huang, Kun
AU - Xia, Jianyang
AU - Wang, Yingping
AU - Ahlström, Anders
AU - Chen, Jiquan
AU - Cook, Robert B.
AU - Cui, Erqian
AU - Fang, Yuanyuan
AU - Fisher, Joshua B.
AU - Huntzinger, Deborah Nicole
AU - Li, Zhao
AU - Michalak, Anna M.
AU - Qiao, Yang
AU - Schaefer, Kevin
AU - Schwalm, Christopher
AU - Wang, Jing
AU - Wei, Yaxing
AU - Xu, Xiaoni
AU - Yan, Liming
AU - Bian, Chenyu
AU - Luo, Yiqi
N1 - Publisher Copyright:
© 2018, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2018/12/1
Y1 - 2018/12/1
N2 - The annual peak growth of vegetation is critical in characterizing the capacity of terrestrial ecosystem productivity and shaping the seasonality of atmospheric CO 2 concentrations. The recent greening of global lands suggests an increasing trend of terrestrial vegetation growth, but whether or not the peak growth has been globally enhanced still remains unclear. Here, we use two global datasets of gross primary productivity (GPP) and a satellite-derived Normalized Difference Vegetation Index (NDVI) to characterize recent changes in annual peak vegetation growth (that is, GPP max and NDVI max ). We demonstrate that the peak in the growth of global vegetation has been linearly increasing during the past three decades. About 65% of the NDVI max variation is evenly explained by expanding croplands (21%), rising CO 2 (22%) and intensifying nitrogen deposition (22%). The contribution of expanding croplands to the peak growth trend is substantiated by measurements from eddy-flux towers, sun-induced chlorophyll fluorescence and a global database of plant traits, all of which demonstrate that croplands have a higher photosynthetic capacity than other vegetation types. The large contribution of CO 2 is also supported by a meta-analysis of 466 manipulative experiments and 15 terrestrial biosphere models. Furthermore, we show that the contribution of GPP max to the change in annual GPP is less in the tropics than in other regions. These multiple lines of evidence reveal an increasing trend in the peak growth of global vegetation. The findings highlight the important roles of agricultural intensification and atmospheric changes in reshaping the seasonality of global vegetation growth.
AB - The annual peak growth of vegetation is critical in characterizing the capacity of terrestrial ecosystem productivity and shaping the seasonality of atmospheric CO 2 concentrations. The recent greening of global lands suggests an increasing trend of terrestrial vegetation growth, but whether or not the peak growth has been globally enhanced still remains unclear. Here, we use two global datasets of gross primary productivity (GPP) and a satellite-derived Normalized Difference Vegetation Index (NDVI) to characterize recent changes in annual peak vegetation growth (that is, GPP max and NDVI max ). We demonstrate that the peak in the growth of global vegetation has been linearly increasing during the past three decades. About 65% of the NDVI max variation is evenly explained by expanding croplands (21%), rising CO 2 (22%) and intensifying nitrogen deposition (22%). The contribution of expanding croplands to the peak growth trend is substantiated by measurements from eddy-flux towers, sun-induced chlorophyll fluorescence and a global database of plant traits, all of which demonstrate that croplands have a higher photosynthetic capacity than other vegetation types. The large contribution of CO 2 is also supported by a meta-analysis of 466 manipulative experiments and 15 terrestrial biosphere models. Furthermore, we show that the contribution of GPP max to the change in annual GPP is less in the tropics than in other regions. These multiple lines of evidence reveal an increasing trend in the peak growth of global vegetation. The findings highlight the important roles of agricultural intensification and atmospheric changes in reshaping the seasonality of global vegetation growth.
UR - http://www.scopus.com/inward/record.url?scp=85056666820&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85056666820&partnerID=8YFLogxK
U2 - 10.1038/s41559-018-0714-0
DO - 10.1038/s41559-018-0714-0
M3 - Article
C2 - 30420745
AN - SCOPUS:85056666820
SN - 2397-334X
VL - 2
SP - 1897
EP - 1905
JO - Nature Ecology and Evolution
JF - Nature Ecology and Evolution
IS - 12
ER -