Abstract
Remarkable genetic diversity and breadth of host species has been uncovered in the Brucella genus over the past decade, fundamentally changing our concept of what it means to be a Brucella. From ocean fishes and marine mammals, to pond dwelling amphibians, forest foxes, desert rodents, and cave-dwelling bats, Brucella have revealed a variety of previously unknown niches. Classical microbiological techniques have been able to help us classify many of these new strains but at times have limited our ability to see the true relationships among or within species. The closest relatives of Brucella are soil bacteria and the adaptations of Brucella spp. to live intracellularly suggest that the genus has evolved to live in vertebrate hosts. Several recently discovered species appear to have phenotypes that are intermediate between soil bacteria and core Brucella, suggesting that they may represent ancestral traits that were subsequently lost in the traditional species. Remarkably, the broad relationships among Brucella species using a variety of sequence and fragment-based approaches have been upheld when using comparative genomics with whole genomes. Nonetheless, genomes are required for fine-scale resolution of many of the relationships and for understanding the evolutionary history of the genus. We expect that the coming decades will reveal many more hosts and previously unknown diversity in a wide range of environments.
Original language | English (US) |
---|---|
Article number | 104865 |
Journal | Infection, Genetics and Evolution |
Volume | 92 |
DOIs | |
State | Published - Aug 2021 |
Keywords
- Brucella
- Brucellosis
- Genomics
- MLSA
- MLVA
- Zoonoses
ASJC Scopus subject areas
- Microbiology
- Ecology, Evolution, Behavior and Systematics
- Molecular Biology
- Genetics
- Microbiology (medical)
- Infectious Diseases