TY - JOUR
T1 - Effects of artificial and western spruce budworm (Lepidoptera: Tortricidae) defoliation on growth and biomass allocation of Douglas-fir seedlings.
AU - Chen, Zhong
AU - Kolb, Thomas E.
AU - Clancy, Karen M.
PY - 2002/6
Y1 - 2002/6
N2 - Artificial defoliation has been used commonly to simulate defoliation by insect herbivores in experiments, in spite of the fact that obvious differences exist between clipping foliage and natural defoliation due to insect feeding. We used a greenhouse experiment to compare the effects of artificial and western spruce budworm (Choristoneura occidentalis Freeman) defoliation on the growth and biomass allocation of 3-yr old half-sib seedlings from mature Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco variety glauca] trees that showed phenotypic resistance versus susceptibility to budworm defoliation in the forest. Artificial clipping of buds mimicked the effects of budworm feeding on total seedling biomass when 50% of the terminal buds were damaged. However, artificial defoliation decreased seedling height, relative growth rate of height, and shoot: root ratio more than budworm defoliation, whereas budworm defoliation decreased stem diameter relative growth rate more than artificial defoliation. Half-sib seedling progeny from resistant maternal tree phenotypes had greater height, diameter, biomass, and shoot: root ratio than seedlings from susceptible phenotypes. We concluded that careful artificial defoliation could generally simulate effects of budworm defoliation on total biomass of Douglas-fir seedlings, but that the two defoliation types did not have equal effects on biomass allocation between shoot and root. Further, an inherently higher growth rate and a greater allocation of biomass to shoot versus root are associated with resistance of Douglas-fir trees to western spruce budworm defoliation.
AB - Artificial defoliation has been used commonly to simulate defoliation by insect herbivores in experiments, in spite of the fact that obvious differences exist between clipping foliage and natural defoliation due to insect feeding. We used a greenhouse experiment to compare the effects of artificial and western spruce budworm (Choristoneura occidentalis Freeman) defoliation on the growth and biomass allocation of 3-yr old half-sib seedlings from mature Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco variety glauca] trees that showed phenotypic resistance versus susceptibility to budworm defoliation in the forest. Artificial clipping of buds mimicked the effects of budworm feeding on total seedling biomass when 50% of the terminal buds were damaged. However, artificial defoliation decreased seedling height, relative growth rate of height, and shoot: root ratio more than budworm defoliation, whereas budworm defoliation decreased stem diameter relative growth rate more than artificial defoliation. Half-sib seedling progeny from resistant maternal tree phenotypes had greater height, diameter, biomass, and shoot: root ratio than seedlings from susceptible phenotypes. We concluded that careful artificial defoliation could generally simulate effects of budworm defoliation on total biomass of Douglas-fir seedlings, but that the two defoliation types did not have equal effects on biomass allocation between shoot and root. Further, an inherently higher growth rate and a greater allocation of biomass to shoot versus root are associated with resistance of Douglas-fir trees to western spruce budworm defoliation.
UR - http://www.scopus.com/inward/record.url?scp=0036598145&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036598145&partnerID=8YFLogxK
U2 - 10.1603/0022-0493-95.3.587
DO - 10.1603/0022-0493-95.3.587
M3 - Article
C2 - 12076004
AN - SCOPUS:0036598145
SN - 0022-0493
VL - 95
SP - 587
EP - 594
JO - Journal of economic entomology
JF - Journal of economic entomology
IS - 3
ER -