TY - JOUR
T1 - Ecosystem carbon storage capacity as affected by Disturbance regimes
T2 - A general theoretical model
AU - Weng, Ensheng
AU - Luo, Yiqi
AU - Wang, Weile
AU - Wang, Han
AU - Hayes, Daniel J.
AU - McGuire, A. David
AU - Hastings, Alan
AU - Schimel, David S.
PY - 2012/9/1
Y1 - 2012/9/1
N2 - Disturbances have been recognized as a key factor shaping terrestrial ecosystem states and dynamics. A general model that quantitatively describes the relationship between carbon storage and disturbance regime is critical for better understanding large scale terrestrial ecosystem carbon dynamics. We developed a model (REGIME) to quantify ecosystem carbon storage capacities (E[x]) under varying disturbance regimes with an analytical solution E[x] = U·τe· λ/λ+Sτ1, where U is ecosystem carbon influx, τe is ecosystem carbon residence time, and τ1 is the residence time of the carbon pool affected by disturbances (biomass pool in this study). The disturbance regime is characterized by the mean disturbance interval (λ) and the mean disturbance severity (s). It is a Michaelis-Menten-type equation illustrating the saturation of carbon content with mean disturbance interval. This model analytically integrates the deterministic ecosystem carbon processes with stochastic disturbance events to reveal a general pattern of terrestrial carbon dynamics at large scales. The model allows us to get a sense of the sensitivity of ecosystems to future environmental changes just by a few calculations. According to the REGIME model, for example, approximately 1.8 Pg C will be lost in the high-latitude regions of North America (>45°N) if fire disturbance intensity increases around 5.7 time the current intensity to the end of the twenty-first century, which will require around 12% increases in net primary productivity (NPP) to maintain stable carbon stocks. If the residence time decreased 10% at the same time additional 12.5% increases in NPP are required to keep current C stocks. The REGIME model also lays the foundation for analytically modeling the interactions between deterministic biogeochemical processes and stochastic disturbance events.
AB - Disturbances have been recognized as a key factor shaping terrestrial ecosystem states and dynamics. A general model that quantitatively describes the relationship between carbon storage and disturbance regime is critical for better understanding large scale terrestrial ecosystem carbon dynamics. We developed a model (REGIME) to quantify ecosystem carbon storage capacities (E[x]) under varying disturbance regimes with an analytical solution E[x] = U·τe· λ/λ+Sτ1, where U is ecosystem carbon influx, τe is ecosystem carbon residence time, and τ1 is the residence time of the carbon pool affected by disturbances (biomass pool in this study). The disturbance regime is characterized by the mean disturbance interval (λ) and the mean disturbance severity (s). It is a Michaelis-Menten-type equation illustrating the saturation of carbon content with mean disturbance interval. This model analytically integrates the deterministic ecosystem carbon processes with stochastic disturbance events to reveal a general pattern of terrestrial carbon dynamics at large scales. The model allows us to get a sense of the sensitivity of ecosystems to future environmental changes just by a few calculations. According to the REGIME model, for example, approximately 1.8 Pg C will be lost in the high-latitude regions of North America (>45°N) if fire disturbance intensity increases around 5.7 time the current intensity to the end of the twenty-first century, which will require around 12% increases in net primary productivity (NPP) to maintain stable carbon stocks. If the residence time decreased 10% at the same time additional 12.5% increases in NPP are required to keep current C stocks. The REGIME model also lays the foundation for analytically modeling the interactions between deterministic biogeochemical processes and stochastic disturbance events.
UR - http://www.scopus.com/inward/record.url?scp=84864631156&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84864631156&partnerID=8YFLogxK
U2 - 10.1029/2012JG002040
DO - 10.1029/2012JG002040
M3 - Article
AN - SCOPUS:84864631156
SN - 0148-0227
VL - 117
JO - Journal of Geophysical Research: Biogeosciences
JF - Journal of Geophysical Research: Biogeosciences
IS - 3
M1 - G03014
ER -