Abstract
Ecosystems with a mix of native and introduced species are increasing globally as extinction and introduction rates rise, resulting in novel species interactions. While species interactions are highly vulnerable to disturbance, little is known about the roles that introduced species play in novel interaction networks and what processes underlie such roles. Studying one of the most extreme cases of human-modified ecosystems, the island of O‘ahu, Hawaii, we show that introduced species there shape the structure of seed dispersal networks to a greater extent than native species. Although both neutral and niche-based processes influenced network structure, niche-based processes played a larger role, despite theory predicting neutral processes to be predominantly important for islands. In fact, ecological correlates of species’ roles (morphology, behavior, abundance) were largely similar to those in native-dominated networks. However, the most important ecological correlates varied with spatial scale and trophic level, highlighting the importance of examining these factors separately to unravel processes determining species contributions to network structure. Although introduced species integrate into interaction networks more deeply than previously thought, by examining the mechanistic basis of species’ roles we can use traits to identify species that can be removed from (or added to) a system to improve crucial ecosystem functions, such as seed dispersal.
Original language | English (US) |
---|---|
Article number | e2009532118 |
Journal | Proceedings of the National Academy of Sciences of the United States of America |
Volume | 118 |
Issue number | 4 |
DOIs | |
State | Published - Jan 26 2021 |
Keywords
- Ecological restoration
- Hawaii
- Mutualisms
- Novel ecosystems
- Plant-animal interactions
ASJC Scopus subject areas
- General