Dimensional transformation of defect-induced noise, dissipation, and nonlinearity

R. O. Behunin, F. Intravaia, P. T. Rakich

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

In recent years, material-induced noise arising from defects has emerged as an impediment to quantum-limited measurement in systems ranging from microwave qubits to gravity-wave interferometers. As experimental systems push to ever smaller dimensions, extrinsic system properties can affect its internal material dynamics. In this paper, we identify intriguing regimes of material physics (defect-phonon and defect-defect dynamics) that are produced by dimensional confinement. Our models show that a range of tell-tale signatures, encoded in the characteristics of defect-induced noise, dissipation, and nonlinearity, are profoundly altered by geometry. Building on this insight, we demonstrate that the magnitude and character of this material-induced noise is transformed in microscale systems, providing an opportunity to improve the fidelity of quantum measurements. Moreover, we show that many emerging nanoelectromechanical, cavity optomechanical, and superconducting resonator systems are poised to probe these regimes of dynamics, in both high- and low-field limits, providing a way to explore the fundamental tenets of glass physics.

Original languageEnglish (US)
Article number224110
JournalPhysical Review B
Volume93
Issue number22
DOIs
StatePublished - Jun 28 2016
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Dimensional transformation of defect-induced noise, dissipation, and nonlinearity'. Together they form a unique fingerprint.

Cite this