Development of alteration rinds by oxidative weathering processes in Beacon Valley, Antarctica, and implications for Mars

M. R. Salvatore, J. F. Mustard, J. W. Head, R. F. Cooper, D. R. Marchant, M. B. Wyatt

Research output: Contribution to journalArticlepeer-review

44 Scopus citations

Abstract

Alteration of fresh rock surfaces proceeds very rapidly in most terrestrial environments so that initial stages of modification of newly exposed surfaces are quickly masked by subsequent aqueous weathering processes. The hyper-arid and hypo-thermal environment of Beacon Valley, Antarctica, is limited in terms of available liquid water and energy available for alteration, which severely slows weathering processes so that the initial stages of alteration can be studied in detail. We report on the nature of initial chemical alteration of the Ferrar Dolerite in Beacon Valley, Antarctica, using a multiplicity of approaches to characterize the process. We suggest that initial chemical alteration is primarily driven by cation migration in response to the oxidizing environment. Morphological studies of altered rock surfaces reveal evidence of small-scale leaching and dissolution patterns as well as physical erosion due to surface weakening. Within the alteration front, mineral structures are largely preserved and alteration is only indicated by discrete zones of discoloration. Mineralogical investigations expose the complexity of the alteration process; visible/near-infrared reflectance and mid-infrared emission spectroscopy reveal significant variations in mineralogical contributions that are consistent with the introduction of oxide and amorphous phases at the surfaces of the rocks, while X-ray diffraction analyses reveal no definitive changes in mineralogy or material properties. Chemical analyses reveal large-scale trends that are consistent with cation migration and leaching, while small-scale electron microprobe analyses indicate that chemical variations associated with magmatic processes are still largely preserved within the alteration rind. This work confirms the incomplete and immature chemical alteration processes at work in the McMurdo Dry Valleys. Liquid water is not a significant contributor to the alteration process at this early stage of rind development, but assists in the removal of alteration products and their local accumulation in the surrounding sediments. These results also suggest that the McMurdo Dry Valleys (and Beacon Valley, in particular) are relevant terrestrial analogs to hyper-arid and hypo-thermal alteration processes that may be dominant on the martian surface.

Original languageEnglish (US)
Pages (from-to)137-161
Number of pages25
JournalGeochimica et Cosmochimica Acta
Volume115
DOIs
StatePublished - Aug 15 2013
Externally publishedYes

ASJC Scopus subject areas

  • Geochemistry and Petrology

Fingerprint

Dive into the research topics of 'Development of alteration rinds by oxidative weathering processes in Beacon Valley, Antarctica, and implications for Mars'. Together they form a unique fingerprint.

Cite this