TY - JOUR
T1 - Depth-dependent greenhouse gas production and consumption in an upland cropping system in northern China
AU - Wang, Yuying
AU - Li, Xiaoxin
AU - Dong, Wenxu
AU - Wu, Dianming
AU - Hu, Chunsheng
AU - Zhang, Yuming
AU - Luo, Yiqi
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/6/1
Y1 - 2018/6/1
N2 - Vertical profiles of greenhouse gas (GHG) production and consumption within soils have not been carefully quantified. The objective of this study was to quantify the depth-dependent contributions of CO2, CH4 and N2O fluxes in the soil profile to soil surface gas exchange. We simultaneously measured the soil surface GHG emissions and the subsurface fluxes (0–115 cm) in situ by using a static chamber-based method (CM) and a concentration gradient-based method (GM) respectively, over two-year period in a maize-based upland cropping system in northern China. We found that unfertilized maize-based farmland acted as CO2 sources and CH4 and N2O sinks. Soil surface respiration was mostly contributed by the 0–15 cm horizon; while CH4 and N2O consumption originated from the 0–40 and 0–15 cm soil horizons, respectively. Specifically, we revealed that the soil surface respiration was contributed by the 0–5 and 5–15 cm horizons, accounting for 70.9 and 27.3% of the surface exchange, respectively. The CH4 consumption at 0–5, 5–15 and 15–40 cm depths accounted for 54.1, 32.3 and 12.1% of the surface exchange, respectively. And the N2O consumption at 0–5 and 5–15 cm depths accounted for 80.4 and 6.6% of the surface exchange, respectively. The subsoil below 15 cm acted largely as a CO2 buffer; the production/consumption potentials of CH4 and N2O were very weak below 40 and 15 cm depths, respectively. In conclusion, our results highlight that the topsoil (0–40 cm) plays a critical role in CO2 production and CH4 and N2O consumption in an unfertilized maize-based farmland in Taihang mountain areas of northern China. However, the mechanisms responsible for changes in stored greenhouse gas within soil pore space are not clear, and further observational and experimental research is required to understand those processes.
AB - Vertical profiles of greenhouse gas (GHG) production and consumption within soils have not been carefully quantified. The objective of this study was to quantify the depth-dependent contributions of CO2, CH4 and N2O fluxes in the soil profile to soil surface gas exchange. We simultaneously measured the soil surface GHG emissions and the subsurface fluxes (0–115 cm) in situ by using a static chamber-based method (CM) and a concentration gradient-based method (GM) respectively, over two-year period in a maize-based upland cropping system in northern China. We found that unfertilized maize-based farmland acted as CO2 sources and CH4 and N2O sinks. Soil surface respiration was mostly contributed by the 0–15 cm horizon; while CH4 and N2O consumption originated from the 0–40 and 0–15 cm soil horizons, respectively. Specifically, we revealed that the soil surface respiration was contributed by the 0–5 and 5–15 cm horizons, accounting for 70.9 and 27.3% of the surface exchange, respectively. The CH4 consumption at 0–5, 5–15 and 15–40 cm depths accounted for 54.1, 32.3 and 12.1% of the surface exchange, respectively. And the N2O consumption at 0–5 and 5–15 cm depths accounted for 80.4 and 6.6% of the surface exchange, respectively. The subsoil below 15 cm acted largely as a CO2 buffer; the production/consumption potentials of CH4 and N2O were very weak below 40 and 15 cm depths, respectively. In conclusion, our results highlight that the topsoil (0–40 cm) plays a critical role in CO2 production and CH4 and N2O consumption in an unfertilized maize-based farmland in Taihang mountain areas of northern China. However, the mechanisms responsible for changes in stored greenhouse gas within soil pore space are not clear, and further observational and experimental research is required to understand those processes.
KW - Depth-dependent contribution
KW - Greenhouse gas
KW - Subsurface gas flux
KW - Surface gas exchange
KW - Upland cropping system
UR - http://www.scopus.com/inward/record.url?scp=85040236692&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85040236692&partnerID=8YFLogxK
U2 - 10.1016/j.geoderma.2018.01.001
DO - 10.1016/j.geoderma.2018.01.001
M3 - Article
AN - SCOPUS:85040236692
SN - 0016-7061
VL - 319
SP - 100
EP - 112
JO - Geoderma
JF - Geoderma
ER -