Data-Intensive Computing Modules for Teaching Parallel and Distributed Computing

Michael Gowanlock, Benoit Gallet

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Parallel and distributed computing (PDC) has found a broad audience that exceeds the traditional fields of computer science. This is largely due to the increasing computational demands of many engineering and domain science research objectives. Thus, there is a demonstrated need to train students with and without computer science backgrounds in core PDC concepts. Given the rise of data science and other data-enabled computational fields, we propose several data-intensive pedagogic modules that are used to teach PDC using message-passing programming with the Message Passing Interface (MPI). These modules employ activities that are common in database systems and scientific workflows that are likely to be employed by domain scientists. Our hypothesis is that using application-driven pedagogic materials facilitates student learning by providing the context needed to fully appreciate the goals of the activities.We evaluated the efficacy of using the data-intensive pedagogic modules to teach core PDC concepts using a sample of graduate students enrolled in a high performance computing course at Northern Arizona University. In the sample, only 30% of students have a traditional computer science background. We found that the hands-on application-driven approach was generally successful at helping students learn core PDC concepts.

Original languageEnglish (US)
Title of host publication2021 IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2021 - In conjunction with IEEE IPDPS 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages350-357
Number of pages8
ISBN (Electronic)9781665435772
DOIs
StatePublished - Jun 2021
Externally publishedYes
Event2021 IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2021 - Virtual, Portland, United States
Duration: May 17 2021 → …

Publication series

Name2021 IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2021 - In conjunction with IEEE IPDPS 2021

Conference

Conference2021 IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2021
Country/TerritoryUnited States
CityVirtual, Portland
Period5/17/21 → …

Keywords

  • Computer Science Education
  • Data-Intensive Computing
  • High Performance Computing
  • Parallel and Distributed Computing

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Hardware and Architecture
  • Information Systems

Fingerprint

Dive into the research topics of 'Data-Intensive Computing Modules for Teaching Parallel and Distributed Computing'. Together they form a unique fingerprint.

Cite this