Constrained dynamic programming and supervised penalty learning algorithms for peak detection in genomic data

Toby Dylan Hocking, Guillem Rigaill, Paul Fearnhead, Guillaume Bourque

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Peak detection in genomic data involves segmenting counts of DNA sequence reads aligned to different locations of a chromosome. The goal is to detect peaks with higher counts, and filter out background noise with lower counts. Most existing algorithms for this problem are unsupervised heuristics tailored to patterns in specific data types. We propose a supervised framework for this problem, using optimal changepoint detection models with learned penalty functions. We propose the first dynamic programming algorithm that is guaranteed to compute the optimal solution to changepoint detection problems with constraints between adjacent segment mean parameters. Implementing this algorithm requires the choice of penalty parameter that determines the number of segments that are estimated. We show how the supervised learning ideas of Rigaill et al. (2013) can be used to choose this penalty. We compare the resulting implementation of our algorithm to several baselines in a benchmark of labeled ChIP-seq data sets with two different patterns (broad H3K36me3 data and sharp H3K4me3 data). Whereas baseline unsupervised methods only provide accurate peak detection for a single pattern, our supervised method achieves state-of-the-art accuracy in all data sets. The log-linear timings of our proposed dynamic programming algorithm make it scalable to the large genomic data sets that are now common. Our implementation is available in the PeakSegOptimal R package on CRAN.

Original languageEnglish (US)
JournalJournal of Machine Learning Research
Volume21
StatePublished - Mar 1 2020
Externally publishedYes

Keywords

  • Changepoint
  • Constrained
  • Non-convex
  • Optimization
  • Segmentation

ASJC Scopus subject areas

  • Software
  • Artificial Intelligence
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Constrained dynamic programming and supervised penalty learning algorithms for peak detection in genomic data'. Together they form a unique fingerprint.

Cite this