Conceptual engineering of a 300-MW CAES plant part 1: Cost effectiveness analysis

M. Nakhamkin, E. C. Swensen, P. A. Abitante, M. Whims, D. Weiner, P. Vadasz, S. Brokman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper presents the results of a project performed for the Israel Electric Corporation, Ltd. (IEC), with the objective of developing the most cost-effective and technically feasible 300-MW CAES-plant concept with underground storage in an aquiferous reservoir. Three conceptually different turbomachinery trains are analyzed, including one based on the use of state-of-the-art combustion turbine components with high firing temperatures. The results are reported for each turbomachinery train concept, optimized for the geological conditions of two alternative underground-storage sites. Along with other generic findings, the paper concludes with the selection of a turbomachinery train, its cycle parameters and configuration, and underground storage site to be used for further preliminary engineering and cost estimates. The results are generalized for use in future CAES projects.

Original languageEnglish (US)
Title of host publicationHeat Transfer; Electric Power; Industrial and Cogeneration
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791879016
DOIs
StatePublished - 1991
EventASME 1991 International Gas Turbine and Aeroengine Congress and Exposition, GT 1991 - Orlando, United States
Duration: Jun 3 1991Jun 6 1991

Publication series

NameProceedings of the ASME Turbo Expo
Volume4

Other

OtherASME 1991 International Gas Turbine and Aeroengine Congress and Exposition, GT 1991
Country/TerritoryUnited States
CityOrlando
Period6/3/916/6/91

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'Conceptual engineering of a 300-MW CAES plant part 1: Cost effectiveness analysis'. Together they form a unique fingerprint.

Cite this