Abstract
Gas-phase reactions of larger gold clusters are poorly known because generation of the intact parent species for mass spectrometric analysis remains quite challenging. Herein we report in-source collision-induced dissociation (CID) results for the monolayer protected clusters (MPCs) Au144(SR)60 and Au130(SR)50, where R- = PhCH2CH2-, in a Bruker micrOTOF time-of-flight mass spectrometer. A sample mixture of the two clusters was introduced into the mass spectrometer by positive mode electrospray ionization. Standard source conditions were used to acquire a reference mass spectrum, exhibiting negligible fragmentation, and then the capillary-skimmer potential difference was increased to induce in-source CID within this lowpressure region (∼4 mbar). Remarkably, distinctive fragmentation patterns are observed for each MPC[3+] parent ion. An assignment of all the major dissociation products (ions and neutrals) is deduced and interpreted by using the distinguishing characteristics in the standard structure-models for the respective MPCs. Also, we propose a ring-forming elimination mechanism to explain R-H neutral loss, as separate from the channels leading to RS-SR or (AuSR)4 neutrals.
Original language | English (US) |
---|---|
Pages (from-to) | 10679-10687 |
Number of pages | 9 |
Journal | Journal of Physical Chemistry A |
Volume | 118 |
Issue number | 45 |
DOIs | |
State | Published - Nov 13 2014 |
Externally published | Yes |
ASJC Scopus subject areas
- Physical and Theoretical Chemistry