TY - JOUR
T1 - Co-phylogenetic analysis of Anaplasma phagocytophilum and its vectors, Ixodes spp. ticks
AU - Foley, Janet
AU - Nieto, Nathan C.
AU - Foley, Patrick
AU - Teglas, Mike B.
PY - 2008/8
Y1 - 2008/8
N2 - The coevolutionary history of Ixodes spp. ticks, the obligately tick-transmitted bacterial pathogen Anaplasma phagocytophilum, and its various rodent reservoir hosts world-wide is not known. According to coevolution theory, the most recently evolved of tick-bacterial complexes could have difficulty maintaining A. phagocytophilum in nature, because transmissibility has not been efficiently maximized. This study was intended to examine the phylogeographic history of I. ricinus-subgroup ticks and A. phagocytophilum, provide an estimate for the date of the divergence of A. marginale and A. phagocytophilum, and evaluate whether there is correspondence between tick and Anaplasma spp. trees. Analysis of Ixodes spp. ticks showed a New World clade consisting of I. scapularis and I. pacificus, European I. ricinus as a sister group to this clade, and Asian I. persulcatus as basal. Of the three A. phagocytophilum genes evaluated, the most resolution was provided by the ankA gene. ankA sequences formed an Old World clade with eastern North America strains as a sister clade. California strains were highly diverse and did not form a clade. Base substitution rates were very comparable along both A. marginale and A. phagocytophilum lineages. Based on 16S rDNA analysis, maximum and minimum divergence times of A. phagocytophilum and A. marginale were calculated to be 78,296,703 and 43,415,708 years, respectively. If A. phagocytophilum did closely coevolve with specific I. ricinus-subgroup tick species, then A. phagocytophilum strains could have specialized on local tick species and optimized local infectivity in the Old World and eastern US. However, lack of absolute resolution of tick trees and conflicting prevalence data (with low prevalence in Asia and western North America) preclude us from inferring a tight coevolutionary relationship of tick species from this phylogeographic analysis.
AB - The coevolutionary history of Ixodes spp. ticks, the obligately tick-transmitted bacterial pathogen Anaplasma phagocytophilum, and its various rodent reservoir hosts world-wide is not known. According to coevolution theory, the most recently evolved of tick-bacterial complexes could have difficulty maintaining A. phagocytophilum in nature, because transmissibility has not been efficiently maximized. This study was intended to examine the phylogeographic history of I. ricinus-subgroup ticks and A. phagocytophilum, provide an estimate for the date of the divergence of A. marginale and A. phagocytophilum, and evaluate whether there is correspondence between tick and Anaplasma spp. trees. Analysis of Ixodes spp. ticks showed a New World clade consisting of I. scapularis and I. pacificus, European I. ricinus as a sister group to this clade, and Asian I. persulcatus as basal. Of the three A. phagocytophilum genes evaluated, the most resolution was provided by the ankA gene. ankA sequences formed an Old World clade with eastern North America strains as a sister clade. California strains were highly diverse and did not form a clade. Base substitution rates were very comparable along both A. marginale and A. phagocytophilum lineages. Based on 16S rDNA analysis, maximum and minimum divergence times of A. phagocytophilum and A. marginale were calculated to be 78,296,703 and 43,415,708 years, respectively. If A. phagocytophilum did closely coevolve with specific I. ricinus-subgroup tick species, then A. phagocytophilum strains could have specialized on local tick species and optimized local infectivity in the Old World and eastern US. However, lack of absolute resolution of tick trees and conflicting prevalence data (with low prevalence in Asia and western North America) preclude us from inferring a tight coevolutionary relationship of tick species from this phylogeographic analysis.
KW - Disease coevolution
KW - Granulocytic anaplasmosis
KW - Phylogeography
KW - Tick evolution
UR - http://www.scopus.com/inward/record.url?scp=51449117411&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=51449117411&partnerID=8YFLogxK
U2 - 10.1007/s10493-008-9173-7
DO - 10.1007/s10493-008-9173-7
M3 - Article
C2 - 18648997
AN - SCOPUS:51449117411
SN - 0168-8162
VL - 45
SP - 155
EP - 170
JO - Experimental and Applied Acarology
JF - Experimental and Applied Acarology
IS - 3-4
ER -