TY - JOUR
T1 - Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI)
T2 - A target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis
AU - Hoang, Tung T.
AU - Schweizer, Herbert P.
PY - 1999/9
Y1 - 1999/9
N2 - The Pseudomonas aeruginosa fabI structural gene, encoding enoyl-acyl carrier protein (ACP) reductase, was cloned and sequenced. Nucleotide sequence analysis revealed that fabI is probably the last gene in a transcriptional unit that includes a gene encoding an ATP-binding protein of an ABC transporter of unknown function. The FabI protein was similar in size and primary sequence to other bacterial enoyl-ACP reductases, and it contained signature motifs for the FAD-dependent pyridine nucleotide reductase and glucose/ribitol dehydrogenase families, respectively. The chromosomal fabI gene was disrupted, and the resulting mutant was viable but possessed only 62% of the total enoyl-ACP reductase activity found in wild- type cell extracts. The fabI-encoded enoyl-ACP reductase activity was NADH dependent and inhibited by triclosan; the residual activity in the fabI mutant was also NADH dependent but not inhibited by triclosan. An polyhistidine-tagged FabI protein was purified and characterized. Purified FabI (i) could use NADH but not NADPH as a cofactor; (ii) used both crotonyl- coenzyme A and crotonyl-ACP as substrates, although it was sixfold more active with crotonyl-ACP; and (iii) was efficiently inhibited by low concentrations of triclosan. A FabI Gly95 -to-Val active-site amino acid substitution was generated by site-directed mutagenesis, and the mutant protein was purified. The mutant FabI protein retained normal enoyl-ACP reductase activity but was highly triclosan resistant. When coupled to FabI, purified P. aeruginosa N-butyryl-L-homoserine lactone (C4-HSL) synthase, RhlI, could synthesize C4-HSL from crotonyl-ACP and S-adenosylmethionine. This reaction was NADH dependent and inhibited by triclosan. The levels of C4-HSL and N-(3-oxo)-dodecanoyl-L-homoserine lactones were reduced 50% in a fabI mutant, corroborating the role of FabI in acylated homoserine lactone synthesis in vivo.
AB - The Pseudomonas aeruginosa fabI structural gene, encoding enoyl-acyl carrier protein (ACP) reductase, was cloned and sequenced. Nucleotide sequence analysis revealed that fabI is probably the last gene in a transcriptional unit that includes a gene encoding an ATP-binding protein of an ABC transporter of unknown function. The FabI protein was similar in size and primary sequence to other bacterial enoyl-ACP reductases, and it contained signature motifs for the FAD-dependent pyridine nucleotide reductase and glucose/ribitol dehydrogenase families, respectively. The chromosomal fabI gene was disrupted, and the resulting mutant was viable but possessed only 62% of the total enoyl-ACP reductase activity found in wild- type cell extracts. The fabI-encoded enoyl-ACP reductase activity was NADH dependent and inhibited by triclosan; the residual activity in the fabI mutant was also NADH dependent but not inhibited by triclosan. An polyhistidine-tagged FabI protein was purified and characterized. Purified FabI (i) could use NADH but not NADPH as a cofactor; (ii) used both crotonyl- coenzyme A and crotonyl-ACP as substrates, although it was sixfold more active with crotonyl-ACP; and (iii) was efficiently inhibited by low concentrations of triclosan. A FabI Gly95 -to-Val active-site amino acid substitution was generated by site-directed mutagenesis, and the mutant protein was purified. The mutant FabI protein retained normal enoyl-ACP reductase activity but was highly triclosan resistant. When coupled to FabI, purified P. aeruginosa N-butyryl-L-homoserine lactone (C4-HSL) synthase, RhlI, could synthesize C4-HSL from crotonyl-ACP and S-adenosylmethionine. This reaction was NADH dependent and inhibited by triclosan. The levels of C4-HSL and N-(3-oxo)-dodecanoyl-L-homoserine lactones were reduced 50% in a fabI mutant, corroborating the role of FabI in acylated homoserine lactone synthesis in vivo.
UR - http://www.scopus.com/inward/record.url?scp=0032859660&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032859660&partnerID=8YFLogxK
U2 - 10.1128/jb.181.17.5489-5497.1999
DO - 10.1128/jb.181.17.5489-5497.1999
M3 - Article
C2 - 10464225
AN - SCOPUS:0032859660
SN - 0021-9193
VL - 181
SP - 5489
EP - 5497
JO - Journal of Bacteriology
JF - Journal of Bacteriology
IS - 17
ER -