TY - JOUR
T1 - Carbon loss from an unprecedented Arctic tundra wildfire
AU - Mack, Michelle C.
AU - Bret-Harte, M. Syndonia
AU - Hollingsworth, Teresa N.
AU - Jandt, Randi R.
AU - Schuur, Edward A.G.
AU - Shaver, Gaius R.
AU - Verbyla, David L.
N1 - Funding Information:
Acknowledgements We thank J. Ahgook Jr, L. Boby, M. Cahill, E. Miya, E. Miller, J. Oyler, C. Roberts, E. Suronen, C. Wachs, C. Wasykowski and D. Yokel for their contributions to fieldwork, C. Apodaca, G. Blohm, E. Brown, G. Crummer and D. Nossov for their contributions to laboratory work and sample analyses, H. Alexander for contributing to data analyses, and P. Ray for insights into tussock morphology. This research was supported by the US NSF Division of Environmental Biology, the Division of Biological Infrastructure and Office of Polar Programs, by the US National Center for Ecological Analysis and Synthesis and by the US Bureau of Land Management Alaska Fire Service and Arctic Field Office.
PY - 2011/7/28
Y1 - 2011/7/28
N2 - Arctic tundra soils store large amounts of carbon (C) in organic soil layers hundreds to thousands of years old that insulate, and in some cases maintain, permafrost soils. Fire has been largely absent from most of this biome since the early Holocene epoch, but its frequency and extent are increasing, probably in response to climate warming. The effect of fires on the C balance of tundra landscapes, however, remains largely unknown. The Anaktuvuk River fire in 2007 burned 1,039 square kilometres of Alaskag's Arctic slope, making it the largest fire on record for the tundra biome and doubling the cumulative area burned since 1950 (ref. 5). Here we report that tundra ecosystems lost 2,016435C-2 in the fire, an amount two orders of magnitude larger than annual net C exchange in undisturbed tundra. Sixty per cent of this C loss was from soil organic matter, and radiocarbon dating of residual soil layers revealed that the maximum age of soil C lost was 50 years. Scaled to the entire burned area, the fire released approximately 2.1teragrams of C to the atmosphere, an amount similar in magnitude to the annual net C sink for the entire Arctic tundra biome averaged over the last quarter of the twentieth century. The magnitude of ecosystem C lost by fire, relative to both ecosystem and biome-scale fluxes, demonstrates that a climate-driven increase in tundra fire disturbance may represent a positive feedback, potentially offsetting Arctic greening and influencing the net C balance of the tundra biome.
AB - Arctic tundra soils store large amounts of carbon (C) in organic soil layers hundreds to thousands of years old that insulate, and in some cases maintain, permafrost soils. Fire has been largely absent from most of this biome since the early Holocene epoch, but its frequency and extent are increasing, probably in response to climate warming. The effect of fires on the C balance of tundra landscapes, however, remains largely unknown. The Anaktuvuk River fire in 2007 burned 1,039 square kilometres of Alaskag's Arctic slope, making it the largest fire on record for the tundra biome and doubling the cumulative area burned since 1950 (ref. 5). Here we report that tundra ecosystems lost 2,016435C-2 in the fire, an amount two orders of magnitude larger than annual net C exchange in undisturbed tundra. Sixty per cent of this C loss was from soil organic matter, and radiocarbon dating of residual soil layers revealed that the maximum age of soil C lost was 50 years. Scaled to the entire burned area, the fire released approximately 2.1teragrams of C to the atmosphere, an amount similar in magnitude to the annual net C sink for the entire Arctic tundra biome averaged over the last quarter of the twentieth century. The magnitude of ecosystem C lost by fire, relative to both ecosystem and biome-scale fluxes, demonstrates that a climate-driven increase in tundra fire disturbance may represent a positive feedback, potentially offsetting Arctic greening and influencing the net C balance of the tundra biome.
UR - http://www.scopus.com/inward/record.url?scp=79960929362&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79960929362&partnerID=8YFLogxK
U2 - 10.1038/nature10283
DO - 10.1038/nature10283
M3 - Article
C2 - 21796209
AN - SCOPUS:79960929362
SN - 0028-0836
VL - 475
SP - 489
EP - 492
JO - Nature
JF - Nature
IS - 7357
ER -