Capillary blood transit time in muscles in relation to body size and aerobic capacity.

S. R. Kayar, H. Hoppeler, J. H. Jones, K. Longworth, R. B. Armstrong, M. H. Laughlin, S. L. Lindstedt, J. E. Bicudo, K. Groebe, C. R. Taylor

Research output: Contribution to journalArticlepeer-review

36 Scopus citations


The mean minimal transit time for blood in muscle capillaries (tc) was estimated in six species, spanning two orders of magnitude in body mass and aerobic capacity: horse, steer, dog, goat, fox and agouti. Arterial (CaO2) and mixed venous (CvO2) blood O2 concentrations, blood hemoglobin concentrations ([Hb]) and oxygen uptake rates were measured while the animals ran on a treadmill at a speed that elicited the maximal oxygen consumption rate (VO2max) from each animal. Blood flow to the muscles (Qm) was assumed to be 85% of cardiac output, which was calculated using the Fick relationship. Total muscle capillary blood volume (Vc) and total muscle mitochondrial volume were estimated by morphometry, using a whole-body muscle sampling scheme. The tc was computed as Vc/Qm. The tc was 0.3-0.5 s in the 4 kg foxes and agoutis, 0.7-0.8 s in the 25 kg dogs and goats, and 0.8-1.0 s in the 400 kg horses and steers. The tc was positively correlated with body mass and negatively correlated with transcapillary O2 release rate per unit capillary length. Mitochondrial content was positively correlated with VO2max and with the product of Qm and [Hb]. These data suggested that Qm, Vc, maximal hemoglobin flux, and consequently tc, are co-adjusted to result in muscle O2 supply conditions that are matched to the O2 demands of the muscles at VO2max.

Original languageEnglish (US)
Pages (from-to)69-81
Number of pages13
JournalThe Journal of experimental biology
StatePublished - 1994

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Physiology
  • Aquatic Science
  • Animal Science and Zoology
  • Molecular Biology
  • Insect Science


Dive into the research topics of 'Capillary blood transit time in muscles in relation to body size and aerobic capacity.'. Together they form a unique fingerprint.

Cite this