## Abstract

In this paper we analyze an exactly solvable model consisting of an inertial Unruh-DeWitt detector which interacts linearly with a massless quantum field in Minkowski spacetime with a perfectly reflecting flat plane boundary. Firstly a set of coupled equations for the detector's and the field's Heisenberg operators are derived. Then we introduce the linear entropy as a measure of entanglement between the detector and the quantum field under mirror reflection, and solve the early-time detector-field entanglement dynamics. After coarse-graining the field, the dynamics of the detector's internal degree of freedom is described by a quantum Langevin equation, where the dissipation and noise kernels respectively correspond to the retarded Green's functions and Hadamard elementary functions of the free quantum field in a half space. At late times when the combined system is in a stationary state, we obtain exact expressions for the detector's covariance matrix and show that the detector-field entanglement decreases for smaller separation between the detector and the mirror. We explain the behavior of detector-field entanglement qualitatively with the help of a detector's mirror image, compare them with the case of two real detectors and explain the differences.

Original language | English (US) |
---|---|

Article number | 40 |

Journal | Journal of High Energy Physics |

Volume | 2013 |

Issue number | 8 |

DOIs | |

State | Published - 2013 |

Externally published | Yes |

## Keywords

- Boundary Quantum Field Theory
- Quantum Dissipative Systems

## ASJC Scopus subject areas

- Nuclear and High Energy Physics