Azimuthal Seismic Anisotropy of 70-Ma Pacific-Plate Upper Mantle

H. F. Mark, D. Lizarralde, J. A. Collins, N. C. Miller, G. Hirth, J. B. Gaherty, R. L. Evans

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Plate formation and evolution processes are predicted to generate upper mantle seismic anisotropy and negative vertical velocity gradients in oceanic lithosphere. However, predictions for upper mantle seismic velocity structure do not fully agree with the results of seismic experiments. The strength of anisotropy observed in the upper mantle varies widely. Further, many refraction studies observe a fast direction of anisotropy rotated several degrees with respect to the paleospreading direction, suggesting that upper mantle anisotropy records processes other than 2-D corner flow and plate-driven shear near mid-ocean ridges. We measure 6.0 ± 0.3% anisotropy at the Moho in 70-Ma lithosphere in the central Pacific with a fast direction parallel to paleospreading, consistent with mineral alignment by 2-D mantle flow near a mid-ocean ridge. We also find an increase in the strength of anisotropy with depth, with vertical velocity gradients estimated at 0.02 km/s/km in the fast direction and 0 km/s/km in the slow direction. The increase in anisotropy with depth can be explained by mechanisms for producing anisotropy other than intrinsic effects from mineral fabric, such as aligned cracks or other structures. This measurement of seismic anisotropy and gradients reflects the effects of both plate formation and evolution processes on seismic velocity structure in mature oceanic lithosphere, and can serve as a reference for future studies to investigate the processes involved in lithospheric formation and evolution.

Original languageEnglish (US)
Pages (from-to)1889-1909
Number of pages21
JournalJournal of Geophysical Research: Solid Earth
Volume124
Issue number2
DOIs
StatePublished - Feb 2019
Externally publishedYes

ASJC Scopus subject areas

  • Geophysics
  • Geochemistry and Petrology
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Azimuthal Seismic Anisotropy of 70-Ma Pacific-Plate Upper Mantle'. Together they form a unique fingerprint.

Cite this