TY - JOUR
T1 - Antigen diversity in the parasitic bacterium anaplasma phagocytophilum arises from selectively-represented, spatially clustered functional pseudogenes
AU - Foley, Janet E.
AU - Nieto, Nathan C.
AU - Barbet, Anthony
AU - Foley, Patrick
PY - 2009
Y1 - 2009
N2 - Anaplasma phagocytophilum is a tick-transmitted bacterial pathogen of humans and other animals, and is an obligate intracellular parasite. Throughout the course of infection, hosts acquire temporary resistance to granulocytic anaplasmosis as they develop immunity specific for the major antigen, major surface protein 2 (Msp2). However, the bacterium then utilizes a novel recombination mechanism shuffling functional pseudogenes sequentially into an expression cassette with conserved 59 and 39 ends, bypassing host immunity. Approximately 100 pseudogenes are present in the only fully sequenced human-origin HZ genome, representing the possibility for almost unlimited antigenic diversity. In the present study, we identified a select group of 20% of the A. phagocytophilum HZ msp2 pseudogenes that have matched preferentially to human, canine, and equine expression cassettes. Pseudogenes cluster predominantly in one spatial run limited to a single genomic island in less than 50% of the genome but phylogenetically related pseudogenes are neither necessarily located in close proximity on the genome nor share similar percent identity with expression cassettes. Pseudogenes near the expression cassette (and the origin) are more likely to be expressed than those farther away. Taken together, these findings suggest that there may be natural selection pressure to retain pseudogenes in one cluster near the putative origin of replication, even though global recombination shuffles pseudogenes around the genome, separating pseudogenes that share genetic origins as well as those with similar identities.
AB - Anaplasma phagocytophilum is a tick-transmitted bacterial pathogen of humans and other animals, and is an obligate intracellular parasite. Throughout the course of infection, hosts acquire temporary resistance to granulocytic anaplasmosis as they develop immunity specific for the major antigen, major surface protein 2 (Msp2). However, the bacterium then utilizes a novel recombination mechanism shuffling functional pseudogenes sequentially into an expression cassette with conserved 59 and 39 ends, bypassing host immunity. Approximately 100 pseudogenes are present in the only fully sequenced human-origin HZ genome, representing the possibility for almost unlimited antigenic diversity. In the present study, we identified a select group of 20% of the A. phagocytophilum HZ msp2 pseudogenes that have matched preferentially to human, canine, and equine expression cassettes. Pseudogenes cluster predominantly in one spatial run limited to a single genomic island in less than 50% of the genome but phylogenetically related pseudogenes are neither necessarily located in close proximity on the genome nor share similar percent identity with expression cassettes. Pseudogenes near the expression cassette (and the origin) are more likely to be expressed than those farther away. Taken together, these findings suggest that there may be natural selection pressure to retain pseudogenes in one cluster near the putative origin of replication, even though global recombination shuffles pseudogenes around the genome, separating pseudogenes that share genetic origins as well as those with similar identities.
UR - http://www.scopus.com/inward/record.url?scp=77949513474&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77949513474&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0008265
DO - 10.1371/journal.pone.0008265
M3 - Article
C2 - 20016821
AN - SCOPUS:77949513474
SN - 1932-6203
VL - 4
JO - PLoS ONE
JF - PLoS ONE
IS - 12
M1 - e8265
ER -