Ankle Exoskeleton Assistance Can Improve Over-Ground Walking Economy in Individuals with Cerebral Palsy

Greg Orekhov, Ying Fang, Jason Luque, Zachary F. Lerner

Research output: Contribution to journalArticlepeer-review

61 Scopus citations


Individuals with neuromuscular impairment from conditions like cerebral palsy face reduced quality of life due to diminishing mobility and independence. Lower-limb exoskeletons have potential to aid mobility, yet few studies have investigated their use during over-ground walking - an exercise that may contribute to our understanding of potential benefit in free-living settings. The goal of this study was to determine the potential for adaptive plantar-flexor assistance from an untethered ankle exoskeleton to improve over-ground walking economy and speed. Six individuals with cerebral palsy completed three consecutive daily over-ground training sessions to acclimate to, and tune, assistance. During a final assessment visit, metabolic cost, walking speed, and soleus electromyography were collected for baseline, unpowered, low, training-tuned, and high assistance conditions. Compared to each participant's baseline condition, we observed a 3.9 ± 1.9% (p = 0.050) increase in walking speed and a 22.0 ± 4.5% (p = 0.002) reduction in soleus activity with training-tuned assistance; metabolic cost of transport was unchanged (p = 0.130). High assistance resulted in an 8.5 ± 4.0% (p = 0.042) reduction in metabolic cost of transport, a 6.3 ± 2.6% (p = 0.029) increase in walking speed, and a 25.0 ± 4.0% (p < 0.001) reduction in soleus activity. Improvement in exoskeleton-assisted walking economy was related to pre-training baseline walking speed ( $\text{R}^{{2}}={0.94}$ , p = 0.001); the slower and more impaired participants improved the most. Energy cost and preferred walking speed remained generally unchanged for the faster and less impaired participants. These findings demonstrate that powered ankle exoskeletons have the potential to improve mobility-related outcomes for some people with cerebral palsy.

Original languageEnglish (US)
Article number8952603
Pages (from-to)461-467
Number of pages7
JournalIEEE Transactions on Neural Systems and Rehabilitation Engineering
Issue number2
StatePublished - Feb 2020
Externally publishedYes


  • Adaptive control
  • ankle assistance
  • cerebral palsy
  • exoskeleton
  • metabolic cost of transport
  • over-ground walking
  • plantarflexion
  • soleus muscle activity
  • walking speed

ASJC Scopus subject areas

  • Rehabilitation
  • General Neuroscience
  • Internal Medicine
  • Biomedical Engineering


Dive into the research topics of 'Ankle Exoskeleton Assistance Can Improve Over-Ground Walking Economy in Individuals with Cerebral Palsy'. Together they form a unique fingerprint.

Cite this