TY - JOUR
T1 - Analysis of substructural variation in families of enzymatic proteins with applications to protein function prediction
AU - Bryant, Drew H.
AU - Moll, Mark
AU - Chen, Brian Y.
AU - Fofanov, Viacheslav Y.
AU - Kavraki, Lydia E.
N1 - Funding Information:
We would like to thank George Bennett and Yousif Shamoo for their insightful comments as well as the anonymous reviewers for their suggestions. This work was supported in part by National Science Foundation grant DBI-0547695 under a subcontract to Rice University, National Science Foundation Graduate Research Fellowship grant DGE-0237081 to DHB, and Rice University Funds. Equipment used was supported by National Science Foundation grants CNS-0454333 and CNS-0421109 in partnership with Rice University, AMD and Cray. Molecular graphics images were produced using the UCSF Chimera package from the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco (supported by NIH P41 RR-01081) [80].
PY - 2010/5/11
Y1 - 2010/5/11
N2 - Background: Structural variations caused by a wide range of physico-chemical and biological sources directly influence the function of a protein. For enzymatic proteins, the structure and chemistry of the catalytic binding site residues can be loosely defined as a substructure of the protein. Comparative analysis of drug-receptor substructures across and within species has been used for lead evaluation. Substructure-level similarity between the binding sites of functionally similar proteins has also been used to identify instances of convergent evolution among proteins. In functionally homologous protein families, shared chemistry and geometry at catalytic sites provide a common, local point of comparison among proteins that may differ significantly at the sequence, fold, or domain topology levels.Results: This paper describes two key results that can be used separately or in combination for protein function analysis. The Family-wise Analysis of SubStructural Templates (FASST) method uses all-against-all substructure comparison to determine Substructural Clusters (SCs). SCs characterize the binding site substructural variation within a protein family. In this paper we focus on examples of automatically determined SCs that can be linked to phylogenetic distance between family members, segregation by conformation, and organization by homology among convergent protein lineages. The Motif Ensemble Statistical Hypothesis (MESH) framework constructs a representative motif for each protein cluster among the SCs determined by FASST to build motif ensembles that are shown through a series of function prediction experiments to improve the function prediction power of existing motifs.Conclusions: FASST contributes a critical feedback and assessment step to existing binding site substructure identification methods and can be used for the thorough investigation of structure-function relationships. The application of MESH allows for an automated, statistically rigorous procedure for incorporating structural variation data into protein function prediction pipelines. Our work provides an unbiased, automated assessment of the structural variability of identified binding site substructures among protein structure families and a technique for exploring the relation of substructural variation to protein function. As available proteomic data continues to expand, the techniques proposed will be indispensable for the large-scale analysis and interpretation of structural data.
AB - Background: Structural variations caused by a wide range of physico-chemical and biological sources directly influence the function of a protein. For enzymatic proteins, the structure and chemistry of the catalytic binding site residues can be loosely defined as a substructure of the protein. Comparative analysis of drug-receptor substructures across and within species has been used for lead evaluation. Substructure-level similarity between the binding sites of functionally similar proteins has also been used to identify instances of convergent evolution among proteins. In functionally homologous protein families, shared chemistry and geometry at catalytic sites provide a common, local point of comparison among proteins that may differ significantly at the sequence, fold, or domain topology levels.Results: This paper describes two key results that can be used separately or in combination for protein function analysis. The Family-wise Analysis of SubStructural Templates (FASST) method uses all-against-all substructure comparison to determine Substructural Clusters (SCs). SCs characterize the binding site substructural variation within a protein family. In this paper we focus on examples of automatically determined SCs that can be linked to phylogenetic distance between family members, segregation by conformation, and organization by homology among convergent protein lineages. The Motif Ensemble Statistical Hypothesis (MESH) framework constructs a representative motif for each protein cluster among the SCs determined by FASST to build motif ensembles that are shown through a series of function prediction experiments to improve the function prediction power of existing motifs.Conclusions: FASST contributes a critical feedback and assessment step to existing binding site substructure identification methods and can be used for the thorough investigation of structure-function relationships. The application of MESH allows for an automated, statistically rigorous procedure for incorporating structural variation data into protein function prediction pipelines. Our work provides an unbiased, automated assessment of the structural variability of identified binding site substructures among protein structure families and a technique for exploring the relation of substructural variation to protein function. As available proteomic data continues to expand, the techniques proposed will be indispensable for the large-scale analysis and interpretation of structural data.
UR - http://www.scopus.com/inward/record.url?scp=77951971437&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77951971437&partnerID=8YFLogxK
U2 - 10.1186/1471-2105-11-242
DO - 10.1186/1471-2105-11-242
M3 - Article
C2 - 20459833
AN - SCOPUS:77951971437
SN - 1471-2105
VL - 11
JO - BMC Bioinformatics
JF - BMC Bioinformatics
M1 - 242
ER -