TY - JOUR
T1 - An experimental test of the Community Assembly by Trait Selection (CATS) model
AU - Strahan, Robert T.
AU - Laughlin, Daniel C.
AU - Moore, Margaret M.
N1 - Funding Information:
This research was supported by USDA McIntire-Stennis appropriations to NAU School of Forestry, and by NAU Ecological Restoration Institute, and by the Arizona Phoenix Chapter of the Achievement Rewards for College Scientists Foundation (ARCS) Foundation. We would like to thank Philip Patterson, Manager, at the Northern Arizona University (NAU) Greenhouse Research Complex for providing space and support to conduct this research. We thank Eddy Novice for his help identifying and tracking individual grass seedlings. This research was supported by USDA McIntire-Stennis appropriations to NAU School of Forestry, and by NAU Ecological Restoration Institute, and by the Arizona Phoenix Chapter of the Achievement Rewards for College Scientists Foundation (ARCS) Foundation.
Publisher Copyright:
© 2018 Strahan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2018/11
Y1 - 2018/11
N2 - The Community Assembly by Trait Selection (CATS) model of community assembly predicts species abundances along environmental gradients in relatively undisturbed vegetation. Here we ask whether this model, when calibrated with data from natural plant communities, can predict the abundances of five dominant grass species (Bouteloua gracilis, Elymus elymoides, Festuca arizonica, Muhlenbergia Montana, and Poa fendleriana) in a greenhouse experiment that manipulated light and soil properties. To address this question, we used generalized additive models (GAMs) to model community-weighted mean (CWM) seed mass, mean Julian flowering date, and specific root length (SRL) as non-linear functions of two environmental variables (soil pH and pine basal area) in natural vegetation. The model-fitted CWM traits were then used as constraints in the CATS model to predict the relative abundance of the five grass species that were seeded in a mixture at equal densities into a 2×2 factorial experiment with soil parent material and light level as crossed factors. Light was the most important factor influencing seedling community composition, especially the abundances of Bouteloua gracilis and Poa fendleriana. The model-predicted relative abundances were significantly correlated with the observed relative abundances, and the model accurately predicted the dominant species in every treatment. P. fendleriana was correctly predicted to be the most abundant species in both shade treatments and the sun-basalt treatment, and B. gracilis was correctly predicted to be the most abundant species in the sun-limestone treatment. Our results provide experimental evidence that environmental filtering of the species pool occurs in the early stages of community assembly (including germination, emergence, and early growth), and that trait-based models calibrated with data from natural plant communities can be used to predict the outcome of the early stages of community assembly under experimental conditions.
AB - The Community Assembly by Trait Selection (CATS) model of community assembly predicts species abundances along environmental gradients in relatively undisturbed vegetation. Here we ask whether this model, when calibrated with data from natural plant communities, can predict the abundances of five dominant grass species (Bouteloua gracilis, Elymus elymoides, Festuca arizonica, Muhlenbergia Montana, and Poa fendleriana) in a greenhouse experiment that manipulated light and soil properties. To address this question, we used generalized additive models (GAMs) to model community-weighted mean (CWM) seed mass, mean Julian flowering date, and specific root length (SRL) as non-linear functions of two environmental variables (soil pH and pine basal area) in natural vegetation. The model-fitted CWM traits were then used as constraints in the CATS model to predict the relative abundance of the five grass species that were seeded in a mixture at equal densities into a 2×2 factorial experiment with soil parent material and light level as crossed factors. Light was the most important factor influencing seedling community composition, especially the abundances of Bouteloua gracilis and Poa fendleriana. The model-predicted relative abundances were significantly correlated with the observed relative abundances, and the model accurately predicted the dominant species in every treatment. P. fendleriana was correctly predicted to be the most abundant species in both shade treatments and the sun-basalt treatment, and B. gracilis was correctly predicted to be the most abundant species in the sun-limestone treatment. Our results provide experimental evidence that environmental filtering of the species pool occurs in the early stages of community assembly (including germination, emergence, and early growth), and that trait-based models calibrated with data from natural plant communities can be used to predict the outcome of the early stages of community assembly under experimental conditions.
UR - http://www.scopus.com/inward/record.url?scp=85057803060&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85057803060&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0206787
DO - 10.1371/journal.pone.0206787
M3 - Article
C2 - 30500826
AN - SCOPUS:85057803060
SN - 1932-6203
VL - 13
JO - PLoS ONE
JF - PLoS ONE
IS - 11
M1 - e0206787
ER -