Altered climate memory characterizes tree growth during forest dieback

Laura Marqués, Kiona Ogle, Drew M.P. Peltier, J. Julio Camarero

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Warming temperatures and droughts are driving widespread forest dieback and growth decline worldwide. In forests experiencing dieback, declining trees may exhibit altered climate memory of growth, indicative of physiological impairment. Thus, we evaluated climate-growth responses of trees in four drought-disturbed forests dominated either by gymnosperms (Abies alba, Pinus sylvestris) or angiosperms (Fagus sylvatica, Quercus humilis) in Northern Spain, where we compared responses of declining (heavily defoliated) and non-declining (slightly or not defoliated) trees. To disentangle the effects of forest dieback and past climate on tree growth, we applied the stochastic antecedent modeling (SAM) framework to annual tree-ring widths to quantify climatic memory. Declining trees had lower recent growth than non-declining conspecifics. All species responded positively to precipitation and temperature, independent of their vigor class, except for declining silver fir (A. alba) and European beech (F. sylvatica) individuals, which showed a negative effect of warmer temperatures on growth. Declining trees of these two species were also more sensitive to recent temperature and precipitation conditions, whilst climatic conditions further into the past were more important for non-declining trees. Silver fir and European beech from both vigor classes were also coupled to climate conditions during markedly different seasons, with dry summer conditions particularly affecting declining trees. Declining and non-declining Scots pine (P. sylvetris) and pubescent oak (Q. humilis) trees did not show different responses to past climate. While drought-triggered dieback differentially impacted silver fir and European beech individuals, Scots pine and pubescent oak trees suffered from a chronic process of loss in tree growth and vigor. Our results highlight the differences in climate sensitivity and climate memory of tree growth in forests experiencing ongoing dieback.

Original languageEnglish (US)
Article number108787
JournalAgricultural and Forest Meteorology
Volume314
DOIs
StatePublished - Mar 1 2022

Keywords

  • Antecedent climate effects
  • Climatic memory
  • Drought stress
  • Forest dieback
  • Tree growth

ASJC Scopus subject areas

  • Forestry
  • Agronomy and Crop Science
  • Global and Planetary Change
  • Atmospheric Science

Fingerprint

Dive into the research topics of 'Altered climate memory characterizes tree growth during forest dieback'. Together they form a unique fingerprint.

Cite this