Alteration of immature sedimentary rocks on Earth and Mars: Recording aqueous and surface-atmosphere processes

Kevin M. Cannon, John F. Mustard, Mark R. Salvatore

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Rock alteration and rind formation in analog environments like Antarctica may provide clues to rock alteration and therefore paleoclimates on Mars. Clastic sedimentary rocks derived from basaltic sources have been studied in situ by martian rovers and are likely abundant on the surface of Mars. However, how such rock types undergo alteration when exposed to different environmental conditions is poorly understood compared with alteration of intact basaltic flows. Here we characterize alteration in the chemically immature Carapace Sandstone from Antarctica, a terrestrial analog for martian sedimentary rocks. We employ a variety of measurements similar to those used on previous and current Mars missions. Laboratory techniques included bulk chemistry, powder X-ray diffraction (XRD), hyperspectral imaging and X-ray absorption spectroscopy. Through these methods we find that primary basaltic material in the Carapace Sandstone is pervasively altered to hydrated clay minerals and palagonite as a result of water-rock interaction. A thick orange rind is forming in current Antarctic conditions, superimposing this previous aqueous alteration signature. The rind exhibits a higher reflectance at visible-near infrared wavelengths than the rock interior, with an enhanced ferric absorption edge likely due to an increase in Fe3+ of existing phases or the formation of minor iron (oxy)hydroxides. This alteration sequence in the Carapace Sandstone results from decreased water-rock interaction over time, and weathering in a cold, dry environment, mimicking a similar transition early in martian history. This transition may be recorded in sedimentary rocks on Mars through a similar superimposition mechanism, capturing past climate changes at the hand sample scale. Our results also suggest that basalt-derived sediments could have sourced significant volumes of hydrated minerals on early Mars due to their greater permeability compared with intact igneous rocks.

Original languageEnglish (US)
Pages (from-to)78-86
Number of pages9
JournalEarth and Planetary Science Letters
Volume417
DOIs
StatePublished - May 1 2015
Externally publishedYes

Keywords

  • Alteration
  • Mars
  • Sedimentary
  • Spectroscopy
  • Weathering

ASJC Scopus subject areas

  • Geophysics
  • Geochemistry and Petrology
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Alteration of immature sedimentary rocks on Earth and Mars: Recording aqueous and surface-atmosphere processes'. Together they form a unique fingerprint.

Cite this