Acclimatization of soil respiration to warming in a tall grass prairie

Y. Luo, S. Wan, D. Hui, L. L. Wallace

Research output: Contribution to journalArticlepeer-review

1014 Scopus citations

Abstract

The latest report by the Intergovernmental Panel on Climate Change (IPCC) predicts a 1.4-5.8°C average increase in the global surface temperature over the period 1990 to 2100 (ref. 1). These estimates of future warming are greater than earlier projections, which is partly due to incorporation of a positive feedback. This feedback results from further release of greenhouse gases from terrestrial ecosystems in response to climatic warming. The feedback mechanism is usually based on the assumption that observed sensitivity of soil respiration to temperature under current climate conditions would hold in a warmer climate. However, this assumption has not been carefully examined. We have therefore conducted an experiment in a tall grass prairie ecosystem in the US Great Plains to study the response of soil respiration (the sum of root and heterotrophic respiration) to artificial warming of about 2 °C. Our observations indicate that the temperature sensitivity of soil respiration decreases - or acclimatizes - under warming and that the acclimatization is greater at high temperatures. This acclimatization of soil respiration to warming may therefore weaken the positive feedback between the terrestrial carbon cycle and climate.

Original languageEnglish (US)
Pages (from-to)622-625
Number of pages4
JournalNature
Volume413
Issue number6856
DOIs
StatePublished - Oct 11 2001
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Acclimatization of soil respiration to warming in a tall grass prairie'. Together they form a unique fingerprint.

Cite this