Abstract
Abrupt thaw could cause permafrost ecosystems to release more carbon than is predicted from gradual thaw alone. However, thermokarst feature mapping is limited in scope, and observed responses of carbon fluxes to abrupt thaw are variable. We developed a thermokarst detection algorithm that identifies thermokarst features from a single elevation dataset with 71.5 percent accuracy and applied it in Healy, Alaska. Additionally, we investigated the landscape-level variation in carbon dioxide and methane fluxes by extent of abrupt thaw using eddy covariance. Seven percent of the site was classified as thermokarst. Water tracks were the most extensive form of thermokarst, although small pits were much more numerous. Abrupt thaw was positively correlated with carbon uptake during the growing season, when increases in gross primary productivity outpaced increases in ecosystem respiration in vegetation-dense water tracks. However, this was outweighed by higher carbon release in thermokarst features during the nongrowing season. Additionally, abrupt thaw was positively correlated with methane production nearly year-round. Our findings support the hypothesis that abrupt thaw of permafrost carbon will contribute to the permafrost climate feedback above and beyond that associated with gradual thaw and highlights the need to map thermokarst and incorporate abrupt thaw into Earth System Models.
Original language | English (US) |
---|---|
Pages (from-to) | 443-464 |
Number of pages | 22 |
Journal | Arctic, Antarctic, and Alpine Research |
Volume | 54 |
Issue number | 1 |
DOIs | |
State | Published - 2022 |
Keywords
- Arctic
- carbon dioxide
- methane
- permafrost
- thermokarst
ASJC Scopus subject areas
- Global and Planetary Change
- Ecology, Evolution, Behavior and Systematics
- Earth-Surface Processes