A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora

Daniel C. Laughlin, Jessica J. Leppert, Margaret M. Moore, Carolyn Hull Sieg

Research output: Contribution to journalArticlepeer-review

171 Scopus citations


Summary: 1. Westoby's [. Plant and Soil (1998), 199, 213] Leaf-Height-Seed (LHS) plant strategy scheme quantifies the strategy of a plant based on its location in a three-dimensional space defined by three functional traits: specific leaf area (SLA), height, and seed mass. This scheme is based on aboveground traits and may neglect strategies of belowground resource capture if root functioning is not mirrored in any of the axes. How then do fine roots fit into the LHS scheme?2. We measured 10 functional traits on 133 plant species in a ponderosa pine forest in northern Arizona, USA. This data set was used to evaluate how well the LHS scheme accounts for the variation in above and belowground traits. 3. The three most important plant strategies were composed of multiple correlated traits, but SLA, seed mass, and height loaded on separate principle components. The first axis reflected the widely observed 'leaf economics spectrum'. Species at the high end of this spectrum had high SLA, high leaf and fine root nitrogen (N) concentration, and low leaf dry matter content. The second axis reflected variation in seed mass and fine root morphology. Plants at the positive end of this spectrum were plants with large seeds and low specific root length (SRL). The third axis reflected variation in height and phenology. Plants at the positive end of this spectrum were tall species that flower late in the growing season. 4. Leaf N concentration was positively correlated with fine root N concentration. SRL was weakly positively correlated with SLA. SRL was not correlated with fine root N concentration. Leaf litter decomposition rate was positively correlated with the leaf economics spectrum and was negatively correlated with the height and phenology spectrum. 5. Leaf traits, seed mass, and height appear to be integrating properties of species that reflect much of the variation in plant function, including root function. Fine root N concentration was positively mirrored by the leaf economics spectrum, and SRL was inversely mirrored by seed mass. The leaf and height axes play a role in controlling leaf litter decomposability, indicating that these strategy axes have important consequences for ecosystem functioning.

Original languageEnglish (US)
Pages (from-to)493-501
Number of pages9
JournalFunctional Ecology
Issue number3
StatePublished - Jun 2010


  • Comparative ecology
  • Functional traits
  • Leaf economics spectrum
  • Litter decomposition
  • Nitrogen
  • Seed mass
  • Specific leaf area
  • Specific root length

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics


Dive into the research topics of 'A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora'. Together they form a unique fingerprint.

Cite this