A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes

Andrew D. Richardson, David Y. Hollinger, George G. Burba, Kenneth J. Davis, Lawrence B. Flanagan, Gabriel G. Katul, J. William Munger, Daniel M. Ricciuto, Paul C. Stoy, Andrew E. Suyker, Shashi B. Verma, Steven C. Wofsy

Research output: Contribution to journalArticlepeer-review

368 Scopus citations

Abstract

Measured surface-atmosphere fluxes of energy (sensible heat, H, and latent heat, LE) and CO2 (FCO2) represent the "true" flux plus or minus potential random and systematic measurement errors. Here, we use data from seven sites in the AmeriFlux network, including five forested sites (two of which include "tall tower" instrumentation), one grassland site, and one agricultural site, to conduct a cross-site analysis of random flux error. Quantification of this uncertainty is a prerequisite to model-data synthesis (data assimilation) and for defining confidence intervals on annual sums of net ecosystem exchange or making statistically valid comparisons between measurements and model predictions. We differenced paired observations (separated by exactly 24 h, under similar environmental conditions) to infer the characteristics of the random error in measured fluxes. Random flux error more closely follows a double-exponential (Laplace), rather than a normal (Gaussian), distribution, and increase as a linear function of the magnitude of the flux for all three scalar fluxes. Across sites, variation in the random error follows consistent and robust patterns in relation to environmental variables. For example, seasonal differences in the random error for H are small, in contrast to both LE and FCO2, for which the random errors are roughly three-fold larger at the peak of the growing season compared to the dormant season. Random errors also generally scale with R n (H and LE) and PPFD (FCO2). For FCO2 (but not H or LE), the random error decreases with increasing wind speed. Data from two sites suggest that FCO2 random error may be slightly smaller when a closed-path, rather than open-path, gas analyzer is used.

Original languageEnglish (US)
Pages (from-to)1-18
Number of pages18
JournalAgricultural and Forest Meteorology
Volume136
Issue number1-2
DOIs
StatePublished - Nov 1 2006
Externally publishedYes

Keywords

  • AmeriFlux
  • Carbon
  • Data assimilation
  • Eddy covariance
  • Flux
  • Measurement error
  • Random error
  • Uncertainty

ASJC Scopus subject areas

  • Forestry
  • Global and Planetary Change
  • Agronomy and Crop Science
  • Atmospheric Science

Fingerprint

Dive into the research topics of 'A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes'. Together they form a unique fingerprint.

Cite this