A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale crater, Mars

MSL Science Team

Research output: Contribution to journalArticlepeer-review

751 Scopus citations

Abstract

The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.

Original languageEnglish (US)
Article number1242777
JournalScience
Volume343
Issue number6169
DOIs
StatePublished - 2014
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale crater, Mars'. Together they form a unique fingerprint.

Cite this