A global map of root biomass across the world's forests

Yuanyuan Huang, Phillipe Ciais, Maurizio Santoro, David Makowski, Jerome Chave, Dmitry Schepaschenko, Rose Z. Abramoff, Daniel S. Goll, Hui Yang, Ye Chen, Wei Wei, Shilong Piao

Research output: Contribution to journalArticlepeer-review

23 Scopus citations


As a key component of the Earth system, roots play a key role in linking Earth's lithosphere, hydrosphere, biosphere and atmosphere. Here we combine 10g307 field measurements of forest root biomass worldwide with global observations of forest structure, climatic conditions, topography, land management and soil characteristics to derive a spatially explicit global high-resolution (ĝ1/4g1gkm) root biomass dataset, including fine and coarse roots. In total, 142g±g25 (95g% CI)gPg of live dry-matter biomass is stored belowground, representing a global average rootg:gshoot biomass ratio of 0.25g±g0.10. Earlier studies (Jackson et al., 1997; Robinson, 2007; Saugier et al., 2001) are 44g%-226g% larger than our estimations of the total root biomass in tropical, temperate and boreal forests. The total global forest root biomass from a recent estimate (Spawn et al., 2020) is 24g% larger than this study. The smaller estimation from this study is attributable to the updated forest area, spatially explicit aboveground biomass density used to predict the patterns of root biomass, new root measurements and the upscaling methodology. We show specifically that the root shoot allometry is one underlying driver that has led to methodological overestimation of root biomass in previous estimations. Raw datasets and global maps generated in this study are deposited at the open-access repository Figshare (10.6084/m9.figshare.12199637.v1; Huang et al., 2020).

Original languageEnglish (US)
Pages (from-to)4263-4274
Number of pages12
JournalEarth System Science Data
Issue number9
StatePublished - Aug 31 2021

ASJC Scopus subject areas

  • General Earth and Planetary Sciences


Dive into the research topics of 'A global map of root biomass across the world's forests'. Together they form a unique fingerprint.

Cite this