TY - GEN
T1 - A geometric parametric analysis of a magnetorheological engine mount
AU - Anderson, Walter
AU - Ciocanel, Constantine
AU - Elahinia, Mohammad
PY - 2010
Y1 - 2010
N2 - Engine vibration has caused a great deal of research for isolation to be performed. Traditionally, isolation was achieved through the use of pure elastomeric (rubber) mounts. However, with advances in vehicle technology, these types of mounts have become inadequate. The inadequacy stems from the vibration profile associated with the engine, i.e. high displacement at low frequency and small displacement at high frequency. Ideal isolation would be achieved through a stiff mount for low frequency and a soft mount for high frequency. This is contradictory to the performance of the elastomeric mounts. Hydraulic mounts were then developed to address this problem. A hydraulic mount has variable stiffness and damping due to the use of a decoupler and an inertia track. However, further advances in vehicle technology have rendered these mounts inadequate as well. Examples of these advances are hybridization (electric and hydraulic) and cylinder on demand (VCM, MDS & ACC). With these technologies, the vibration excitation has a significantly different profile, occurs over a wide range of frequencies, and calls for a new technology that can address this need. Magnetorheological (MR) fluid is a smart material that is able to change viscosity in the presence of a magnetic field. With the use of MR fluid, variable damping and stiffness can be achieved. An MR mount has been developed and tested. The performance of the mount depends on the geometry of the rubber part as well as the behavior of the MR fluid. The rubber top of the mount is the topic of this study due to its major impact on the isolation characteristics of the MR mount. To develop a design methodology to address the isolation needs of different hybrid vehicles, a geometric parametric finite element analysis has been completed and presented in this paper.
AB - Engine vibration has caused a great deal of research for isolation to be performed. Traditionally, isolation was achieved through the use of pure elastomeric (rubber) mounts. However, with advances in vehicle technology, these types of mounts have become inadequate. The inadequacy stems from the vibration profile associated with the engine, i.e. high displacement at low frequency and small displacement at high frequency. Ideal isolation would be achieved through a stiff mount for low frequency and a soft mount for high frequency. This is contradictory to the performance of the elastomeric mounts. Hydraulic mounts were then developed to address this problem. A hydraulic mount has variable stiffness and damping due to the use of a decoupler and an inertia track. However, further advances in vehicle technology have rendered these mounts inadequate as well. Examples of these advances are hybridization (electric and hydraulic) and cylinder on demand (VCM, MDS & ACC). With these technologies, the vibration excitation has a significantly different profile, occurs over a wide range of frequencies, and calls for a new technology that can address this need. Magnetorheological (MR) fluid is a smart material that is able to change viscosity in the presence of a magnetic field. With the use of MR fluid, variable damping and stiffness can be achieved. An MR mount has been developed and tested. The performance of the mount depends on the geometry of the rubber part as well as the behavior of the MR fluid. The rubber top of the mount is the topic of this study due to its major impact on the isolation characteristics of the MR mount. To develop a design methodology to address the isolation needs of different hybrid vehicles, a geometric parametric finite element analysis has been completed and presented in this paper.
UR - http://www.scopus.com/inward/record.url?scp=80054976295&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80054976295&partnerID=8YFLogxK
U2 - 10.1115/DETC2010-28941
DO - 10.1115/DETC2010-28941
M3 - Conference contribution
AN - SCOPUS:80054976295
SN - 9780791844120
T3 - Proceedings of the ASME Design Engineering Technical Conference
SP - 143
EP - 150
BT - ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2010
T2 - ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2010
Y2 - 15 August 2010 through 18 August 2010
ER -