TY - JOUR
T1 - A genomic survey of positive selection in Burkholderia pseudomallei provides insights into the evolution of accidental virulence
AU - Nandi, Tannistha
AU - Ong, Catherine
AU - Singh, Arvind Pratap
AU - Boddey, Justin
AU - Atkins, Timothy
AU - Sarkar-Tyson, Mitali
AU - Essex-Lopresti, Angela E.
AU - Chua, Hui Hoon
AU - Pearson, Talima
AU - Kreisberg, Jason F.
AU - Nilsson, Christina
AU - Ariyaratne, Pramila
AU - Ronning, Catherine
AU - Losada, Liliana
AU - Ruan, Yijun
AU - Sung, Wing Kin
AU - Woods, Donald
AU - Titball, Richard W.
AU - Beacham, Ifor
AU - Peak, Ian
AU - Keim, Paul
AU - Nierman, William C.
AU - Tan, Patrick
PY - 2010/4
Y1 - 2010/4
N2 - Certain environmental microorganisms can cause severe human infections, even in the absence of an obvious requirement for transition through an animal host for replication ("accidental virulence"). To understand this process, we compared eleven isolate genomes of Burkholderia pseudomallei (Bp), a tropical soil microbe and causative agent of the human and animal disease melioidosis. We found evidence for the existence of several new genes in the Bp reference genome, identifying 282 novel genes supported by at least two independent lines of supporting evidence (mRNA transcripts, database homologs, and presence of ribosomal binding sites) and 81 novel genes supported by all three lines. Within the Bp core genome, 211 genes exhibited significant levels of positive selection (4.5%), distributed across many cellular pathways including carbohydrate and secondary metabolism. Functional experiments revealed that certain positively selected genes might enhance mammalian virulence by interacting with host cellular pathways or utilizing host nutrients. Evolutionary modifications improving Bp environmental fitness may thus have indirectly facilitated the ability of Bp to colonize and survive in mammalian hosts. These findings improve our understanding of the pathogenesis of melioidosis, and establish Bp as a model system for studying the genetics of accidental virulence.
AB - Certain environmental microorganisms can cause severe human infections, even in the absence of an obvious requirement for transition through an animal host for replication ("accidental virulence"). To understand this process, we compared eleven isolate genomes of Burkholderia pseudomallei (Bp), a tropical soil microbe and causative agent of the human and animal disease melioidosis. We found evidence for the existence of several new genes in the Bp reference genome, identifying 282 novel genes supported by at least two independent lines of supporting evidence (mRNA transcripts, database homologs, and presence of ribosomal binding sites) and 81 novel genes supported by all three lines. Within the Bp core genome, 211 genes exhibited significant levels of positive selection (4.5%), distributed across many cellular pathways including carbohydrate and secondary metabolism. Functional experiments revealed that certain positively selected genes might enhance mammalian virulence by interacting with host cellular pathways or utilizing host nutrients. Evolutionary modifications improving Bp environmental fitness may thus have indirectly facilitated the ability of Bp to colonize and survive in mammalian hosts. These findings improve our understanding of the pathogenesis of melioidosis, and establish Bp as a model system for studying the genetics of accidental virulence.
UR - http://www.scopus.com/inward/record.url?scp=77954044098&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77954044098&partnerID=8YFLogxK
U2 - 10.1371/journal.ppat.1000845
DO - 10.1371/journal.ppat.1000845
M3 - Article
C2 - 20368977
AN - SCOPUS:77954044098
SN - 1553-7366
VL - 6
SP - 1
EP - 15
JO - PLoS Pathogens
JF - PLoS Pathogens
IS - 4
ER -