A conserved active site PenA β-lactamase Ambler motif specific for Burkholderia pseudomallei/B. mallei is likely responsible for intrinsic amoxicillin-clavulanic acid sensitivity and facilitates a simple diagnostic PCR assay for melioidosis

Nawarat Somprasong, Johannah P. Hagen, Jason W. Sahl, Jessica R. Webb, Carina M. Hall, Bart J. Currie, David M. Wagner, Paul Keim, Herbert P. Schweizer

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Burkholderia pseudomallei is a soil- and water-dwelling Gram-negative bacterium that causes melioidosis in humans and animals. Amoxicillin-clavulanic acid (AMC) susceptibility has been hailed as an integral part of the screening algorithm for identification of B. pseudomallei, but the molecular basis for the inherent AMC susceptibility of this bacterium remains undefined. This study showed that B. pseudomallei (and the closely-related B. mallei) wild-type strains are the only Burkholderia spp. that contain a 70STSK73 PenA Ambler motif. This motif was present in >99.5% of 1820 analysed B. pseudomallei strains and 100% of 83 analysed B. mallei strains, and is proposed as the likely cause for their inherent AMC sensitivity. The authors developed a polymerase chain reaction (PCR) assay that specifically amplifies the penA 70ST(S/F)K73-containing region from B. pseudomallei and B. mallei, but not from the remaining B. pseudomallei complex species or the 70STFK73 region from the closely-related penB of B. cepacia complex species. The abundance and purity of the 193-bp PCR fragment from putative B. pseudomallei isolates from clinical and environmental samples is likely sufficient for reliable confirmation of the presence of B. pseudomallei. The PCR assay is designed to be especially suited for use in resource-constrained areas. While not further explored in this study, the assay may allow diagnosis of putative B. mallei in culture isolates from animal and human samples.

Original languageEnglish (US)
Article number106714
JournalInternational Journal of Antimicrobial Agents
Volume61
Issue number3
DOIs
StatePublished - Mar 2023

Keywords

  • Amoxicillin-clavulanic acid
  • Burkholderia pseudomallei
  • Class A β-lactamase
  • Diagnostic PCR
  • Susceptibility

ASJC Scopus subject areas

  • Microbiology (medical)
  • Infectious Diseases
  • Pharmacology (medical)

Fingerprint

Dive into the research topics of 'A conserved active site PenA β-lactamase Ambler motif specific for Burkholderia pseudomallei/B. mallei is likely responsible for intrinsic amoxicillin-clavulanic acid sensitivity and facilitates a simple diagnostic PCR assay for melioidosis'. Together they form a unique fingerprint.

Cite this