3D nanofabrication on complex seed shapes using glancing angle deposition

Hyeon Ho Jeong, Andrew G. Mark, John G. Gibbs, Thomas Reindl, Ulrike Waizmann, Jurgen Weis, Peer Fischer

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

Three-dimensional (3D) fabrication techniques promise new device architectures and enable the integration of more components, but fabricating 3D nanostructures for device applications remains challenging. Recently, we have performed glancing angle deposition (GLAD) upon a nanoscale hexagonal seed array to create a variety of 3D nanoscale objects including multicomponent rods, helices, and zigzags [1]. Here, in an effort to generalize our technique, we present a step-by-step approach to grow 3D nanostructures on more complex nanoseed shapes and configurations than before. This approach allows us to create 3D nanostructures on nanoseeds regardless of seed sizes and shapes.

Original languageEnglish (US)
Title of host publicationMEMS 2014 - 27th IEEE International Conference on Micro Electro Mechanical Systems
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages437-440
Number of pages4
ISBN (Print)9781479935086
DOIs
StatePublished - 2014
Externally publishedYes
Event27th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2014 - San Francisco, CA, United States
Duration: Jan 26 2014Jan 30 2014

Publication series

NameProceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
ISSN (Print)1084-6999

Conference

Conference27th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2014
Country/TerritoryUnited States
CitySan Francisco, CA
Period1/26/141/30/14

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of '3D nanofabrication on complex seed shapes using glancing angle deposition'. Together they form a unique fingerprint.

Cite this