Data from: Proximate controls on semiarid soil greenhouse gas fluxes across 3 million years of soil development

  • Benjamin Sullivan (Creator)
  • Megan K. Nasto (Creator)
  • Stephen C. Hart (Creator)
  • Bruce A. Hungate (Creator)

Dataset

Description

Soils are important sources and sinks of three greenhouse gases (GHGs): carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). However, it is unknown whether semiarid landscapes are important contributors to global fluxes of these gases, partly because our mechanistic understanding of soil GHG fluxes is largely derived from more humid ecosystems. We designed this study with the objective of identifying the important soil physical and biogeochemical controls on soil GHG fluxes in semiarid soils by observing seasonal changes in soil GHG fluxes across a three million year substrate age gradient in northern Arizona. We also manipulated soil nitrogen (N) and phosphorus availability with 7 years of fertilization and used regression tree analysis to identify drivers of unfertilized and fertilized soil GHG fluxes. Similar to humid ecosystems, soil N2O flux was correlated with changes in N and water availability and soil CO2 efflux was correlated with changes in water availability and temperature. Soil CH4 uptake was greatest in relatively colder and wetter soils. While fertilization had few direct effects on soil CH4 flux, soil nitrate was an important predictor of soil CH4 uptake in unfertilized soils and soil ammonium was an important predictor of soil CH4 uptake in fertilized soil. Like in humid ecosystems, N gas loss via nitrification or denitrification appears to increase with increases in N and water availability during ecosystem development. Our results suggest that, with some exceptions, the drivers of soil GHG fluxes in semiarid ecosystems are often similar to those observed in more humid ecosystems.
Date made availableDec 8 2017
PublisherDRYAD

Cite this